Disconjugacy of fourth-order equations on graphs
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1731-1770

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper develops the theory of disconjugacy of fourth-order equations on geometric graphs which arises in modelling rod structures. The disconjugacy of an equation is defined in terms of a special fundamental system of solutions of the homogeneous equation. The disconjugacy property is shown to be related to the positivity property of the Green's functions for certain classes of boundary value problems for a fourth-order equation on a graph. A maximum principle for a fourth-order equation on a graph is formulated, and some properties of differential inequalities are proved. Bibliography: 25 titles.
Keywords: disconjugacy, differential equation on a graph, Green's function, maximum principle
Mots-clés : conjugacy.
@article{SM_2015_206_12_a4,
     author = {R. Ch. Kulaev},
     title = {Disconjugacy of fourth-order equations on graphs},
     journal = {Sbornik. Mathematics},
     pages = {1731--1770},
     publisher = {mathdoc},
     volume = {206},
     number = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a4/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - Disconjugacy of fourth-order equations on graphs
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1731
EP  - 1770
VL  - 206
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a4/
LA  - en
ID  - SM_2015_206_12_a4
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T Disconjugacy of fourth-order equations on graphs
%J Sbornik. Mathematics
%D 2015
%P 1731-1770
%V 206
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a4/
%G en
%F SM_2015_206_12_a4
R. Ch. Kulaev. Disconjugacy of fourth-order equations on graphs. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1731-1770. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a4/