An analogue of Polya's theorem for piecewise holomorphic functions
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1707-1721

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-known result due to Polya for a function given by its holomorphic germ at $z=\infty$ is extended to the case of a piecewise holomorphic function on an arbitrary compact set in $\overline{\mathbb C}$. This result is applied to the problem of the existence of compact sets that have the minimum transfinite diameter in the external field of the logarithmic potential of a negative unit charge among all compact sets such that a certain multivalued analytic function is single-valued and piecewise holomorphic on their complement. Bibliography: 13 titles.
Keywords: rational approximations, continued fractions, Hankel determinants
Mots-clés : Padé approximants.
@article{SM_2015_206_12_a2,
     author = {V. I. Buslaev},
     title = {An analogue of {Polya's} theorem for piecewise holomorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {1707--1721},
     publisher = {mathdoc},
     volume = {206},
     number = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - An analogue of Polya's theorem for piecewise holomorphic functions
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1707
EP  - 1721
VL  - 206
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a2/
LA  - en
ID  - SM_2015_206_12_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T An analogue of Polya's theorem for piecewise holomorphic functions
%J Sbornik. Mathematics
%D 2015
%P 1707-1721
%V 206
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a2/
%G en
%F SM_2015_206_12_a2
V. I. Buslaev. An analogue of Polya's theorem for piecewise holomorphic functions. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1707-1721. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a2/