Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1682-1706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider differential equations with quadratic right-hand sides that admit two quadratic first integrals, one of which is a positive-definite quadratic form. We indicate conditions of general nature under which a linear change of variables reduces this system to a certain ‘canonical’ form. Under these conditions, the system turns out to be divergenceless and can be reduced to a Hamiltonian form, but the corresponding linear Lie-Poisson bracket does not always satisfy the Jacobi identity. In the three-dimensional case, the equations can be reduced to the classical equations of the Euler top, and in four-dimensional space, the system turns out to be superintegrable and coincides with the Euler-Poincaré equations on some Lie algebra. In the five-dimensional case we find a reducing multiplier after multiplying by which the Poisson bracket satisfies the Jacobi identity. In the general case for $n>5$ we prove the absence of a reducing multiplier. As an example we consider a system of Lotka-Volterra type with quadratic right-hand sides that was studied by Kovalevskaya from the viewpoint of conditions of uniqueness of its solutions as functions of complex time. Bibliography: 38 titles.
Keywords: first integrals, conformally Hamiltonian system, Kovalevskaya system, dynamical systems with quadratic right-hand sides.
Mots-clés : Poisson bracket
@article{SM_2015_206_12_a1,
     author = {I. A. Bizyaev and V. V. Kozlov},
     title = {Homogeneous systems with quadratic integrals, {Lie-Poisson} quasibrackets, and {Kovalevskaya's} method},
     journal = {Sbornik. Mathematics},
     pages = {1682--1706},
     year = {2015},
     volume = {206},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a1/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - V. V. Kozlov
TI  - Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1682
EP  - 1706
VL  - 206
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a1/
LA  - en
ID  - SM_2015_206_12_a1
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A V. V. Kozlov
%T Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method
%J Sbornik. Mathematics
%D 2015
%P 1682-1706
%V 206
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a1/
%G en
%F SM_2015_206_12_a1
I. A. Bizyaev; V. V. Kozlov. Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1682-1706. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a1/

[1] V. V. Kozlov, Linear systems with a quadratic integral, 56:6 (1992), 803–809 | DOI | MR | Zbl

[2] H. Yoshida, “Necessary condition for the existence of algebraic first integrals”, I. Kowalevski's exponents, Celestial Mech., 31:4 (1983), 363–379 ; II. Condition for algebraic integrability, 381–399 | DOI | MR | Zbl | DOI | MR | Zbl

[3] V. V. Kozlov, “Tensor invariants of quasihomogeneous systems of differential equations, and the Kovalevskaya–Lyapunov asymptotic method”, Math. Notes, 51:2 (1992), 138–142 | DOI | MR | Zbl

[4] V. V. Kozlov, Obschaya teoriya vikhrei, 2-e izd., NITs «Regulyarnaya i khaoticheskaya dinamika», In-t kompyuternykh issledovanii, M.–Izhevsk, 2013, 324 pp. | MR | Zbl

[5] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 294 pp. | MR | Zbl

[6] E. B. Gledzer, F. V. Dolzhanskii, A. M. Obukhov, Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981, 367 pp. | MR | Zbl

[7] L. A. Takhtajan, “A simple example of modular forms as tau-functions for integrable equations”, Theoret. and Math. Phys., 93:2 (1992), 1308–1317 | DOI | MR | Zbl

[8] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl

[9] A. M. Perelomov, “Some remarks on the integrability of the equations of motion of a rigid body in an ideal fluid”, Funct. Anal. Appl., 15:2 (1981), 144–146 | DOI | MR | Zbl

[10] V. Volterra, “Sopra una classe di equazioni dinamiche”, Atti della R. Accademia delle Scienze di Torino, 33 (1897–98), 451–475 | Zbl

[11] A. J. Van Der Schaft, B. M. Maschke, “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl

[12] A. M. Obukhov, “Integral invariants in hydrodynamic systems”, Soviet Phys. Dokl., 14 (1969), 32–35 | Zbl

[13] Ch. J. de la Vallée-Poussin, Cours d'analyse infinitésimale, v. II, Seconde édition considérablement remaniée, Uyspruyt, Louvain; Gauthier-Villars, Paris, 1912, ix+464 pp. | MR | Zbl

[14] V. Volterra, “Sur la théorie des variations des latitudes”, Acta Math., 22:1 (1899), 201–357 | DOI | MR | Zbl

[15] V. V. Kozlov, “Dynamical systems with multivalued integrals on a torus”, Proc. Steklov Inst. Math., 256 (2007), 188–205 | DOI | MR | Zbl

[16] Y. Nambu, “Generalized Hamiltonian dynamics”, Phys. Rev. D (3), 7:8 (1973), 2405–2412 | DOI | MR | Zbl

[17] E. B. Gledzer, “System of hydrodynamic type admitting two quadratic integrals of motion”, Soviet Phys. Dokl., 18 (1973), 216–217 | Zbl

[18] I. A. Bizyaev, A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:10 (2015), 1530028, 21 pp. | DOI | MR

[19] Yu. N. Fedorov, V. V. Kozlov, “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 141–171 | MR | Zbl

[20] M. Petrera, A. Pfadler, Yu. B. Suris, “On integrability of Hirota–Kimura type discretizations”, Regul. Chaotic Dyn., 16:3-4 (2011), 245–289 | DOI | MR | Zbl

[21] V. V. Kozlov, D. A. Onishchenko, “Nonintegrability of Kirchhoff's equations”, Soviet Math. Dokl., 26 (1982), 495–498 | MR | Zbl

[22] M. Berger, Géométrie, v. 4, 5, CEDIC, Paris; Nathan Information, Paris, 1977, 218 pp., 189 pp. | MR | MR | MR | Zbl | Zbl

[23] Perepiska S. V. Kovalevskoi i G. Mittag-Lefflera, Nauchnoe nasledstvo, 7, ed. A. P. Yushkevich, Nauka, M., 1984, 312 pp. | MR | Zbl

[24] M. Petrera, Yu. B. Suris, “S. V. Kovalevskaya system, its generalization and discretization”, Front. Math. China, 8:5 (2013), 1047–1065 | DOI | MR | Zbl

[25] C. Lăzureanu, T. Bînzar, “Symplectic realizations and symmetries of a Lotka–Volterra type system”, Regul. Chaotic Dyn., 18:3 (2013), 203–213 | DOI | MR | Zbl

[26] V. V. Kozlov, “Invariant measures of Euler–Poincaré equations on Lie algebras”, Funct. Anal. Appl., 22:1 (1988), 58–59 | DOI | MR | Zbl

[27] R. M. Tudoran, A. Gîrban, “On a Hamiltonian version of a three-dimensional Lotka–Volterra system”, Nonlinear Anal. Real World Appl., 13:5 (2012), 2304–2312 | DOI | MR | Zbl

[28] J. Llibre, C. Valls, “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62:5 (2011), 761–777 | DOI | MR | Zbl

[29] S. A. Chaplygin', “K' teorii dvizheniya negolonomnykh' sistem'. Teorema o privodyaschem' mnozhitelѣ”, Matem. sb., 28:2 (1912), 303–314 ; Собрание сочинений, т. 1, Гостехиздат, М.–Л., 1948, 15–25 ; S. A. Chaplygin, “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | Zbl | MR | Zbl | DOI | MR | Zbl

[30] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[31] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrizatsiya teoremy Chaplygina o privodyaschem mnozhitele”, Nelineinaya dinam., 9:4 (2013), 627–640

[32] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp. | MR | Zbl

[33] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Dynamics and control of an omniwheel vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl

[34] A. V. Borisov, A. V. Tsygvintsev, “Kovalevskaya's method in the dynamics of a rigid body”, J. Appl. Math. Mech., 61:1 (1997), 27–32 | DOI | MR | Zbl

[35] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Gamiltonovost i integriruemost zadachi Suslova”, Nelineinaya dinam., 6:1 (2010), 127–142 ; A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116 | DOI | MR | Zbl

[36] O. E. Fernandez, A. M. Bloch, D. V. Zenkov, “The geometry and integrability of the Suslov problem”, J. Math. Phys., 55:11 (2014), 112704, 14 pp. | DOI | MR | Zbl

[37] Yu. N. Fedorov, A. J. Maciejewski, M. Przybylska, “The generalized Euler–Poinsot rigid body equations: explicit elliptic solutions”, J. Phys. A, 46:41 (2013), 415201, 26 pp. | DOI | MR | Zbl

[38] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR | Zbl