Mots-clés : Poincaré metric
@article{SM_2015_206_12_a0,
author = {F. G. Avkhadiev},
title = {Integral inequalities in domains of hyperbolic type and their applications},
journal = {Sbornik. Mathematics},
pages = {1657--1681},
year = {2015},
volume = {206},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/}
}
F. G. Avkhadiev. Integral inequalities in domains of hyperbolic type and their applications. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1657-1681. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/
[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[2] L. Carleson, T. W. Gamelin, Complex dynamics, Universitext Tracts Math., Springer-Verlag, New York, 1993, x+175 pp. | DOI | MR | Zbl
[3] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Front. Math., Birkhäuser Verlag, Basel, 2009, viii+156 pp. | DOI | MR | Zbl
[4] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | MR | Zbl
[5] J. L. Fernández, J. M. Rodríguez, “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 15:1 (1990), 165–183 | DOI | MR | Zbl
[6] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl
[7] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbf{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl
[8] H. Brezis, M. Marcus, “Hardy's inequalities revisited. Dedicated to Ennio De Giorgi”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237 | MR | Zbl
[9] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Func. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl
[10] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 (electronic) | MR | Zbl
[11] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255:1 (2006), 2–12 | DOI | MR | Zbl
[12] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl
[13] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl
[14] A. F. Beardon, Ch. Pommerenke, “The Poincaré metric of plane domains”, J. London Math. Soc. (2), 18:3 (1978), 475–483 | DOI | MR | Zbl
[15] F. G. Avkhadiev, “Solution of the generalized Saint Venant problem”, Sb. Math., 189:12 (1998), 1739–1748 | DOI | DOI | MR | Zbl
[16] T. Sugawa, “Uniformly perfect sets: analytic and geometric aspects”, Sugaku Expositions, 16:2 (2003), 225–242 | MR | Zbl
[17] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, N. J., 1951, xvi+279 pp. | MR | MR | Zbl | Zbl
[18] F. G. Avkhadiev, A. R. Kacimov, “Analytical solutions and estimates for microlevel flows”, J. Porous Media, 8:2 (2005), 125–148 | DOI
[19] R. G. Salahudinov, “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequal. Appl., 6:3 (2001), 253–260 | DOI | MR | Zbl
[20] D. A. Abramov, F. G. Avkhadiev, D. Kh. Giniyatova, “Versions of the Schwarz lemma for domain moments and the torsional rigidity”, Lobachevskii J. Math., 32:2 (2011), 149–158 | DOI | MR | Zbl