Integral inequalities in domains of hyperbolic type and their applications
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1657-1681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New integral Hardy-type inequalities for compactly supported functions in arbitrary plane domains of hyperbolic type are given. Special cases for domains with uniformly perfect boundaries are studied and some applications are considered. The proofs depend substantially on fundamental equations and formulae for the hyperbolic metric, and use is also made of characteristics of domains in terms of moduli. These date back to Teichmüller. Bibliography: 20 titles.
Keywords: conformal mappings, uniformly perfect sets, Hardy's inequalities.
Mots-clés : Poincaré metric
@article{SM_2015_206_12_a0,
     author = {F. G. Avkhadiev},
     title = {Integral inequalities in domains of hyperbolic type and their applications},
     journal = {Sbornik. Mathematics},
     pages = {1657--1681},
     year = {2015},
     volume = {206},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Integral inequalities in domains of hyperbolic type and their applications
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1657
EP  - 1681
VL  - 206
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/
LA  - en
ID  - SM_2015_206_12_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Integral inequalities in domains of hyperbolic type and their applications
%J Sbornik. Mathematics
%D 2015
%P 1657-1681
%V 206
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/
%G en
%F SM_2015_206_12_a0
F. G. Avkhadiev. Integral inequalities in domains of hyperbolic type and their applications. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1657-1681. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a0/

[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[2] L. Carleson, T. W. Gamelin, Complex dynamics, Universitext Tracts Math., Springer-Verlag, New York, 1993, x+175 pp. | DOI | MR | Zbl

[3] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Front. Math., Birkhäuser Verlag, Basel, 2009, viii+156 pp. | DOI | MR | Zbl

[4] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | MR | Zbl

[5] J. L. Fernández, J. M. Rodríguez, “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 15:1 (1990), 165–183 | DOI | MR | Zbl

[6] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl

[7] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbf{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl

[8] H. Brezis, M. Marcus, “Hardy's inequalities revisited. Dedicated to Ennio De Giorgi”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237 | MR | Zbl

[9] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Func. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[10] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 (electronic) | MR | Zbl

[11] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255:1 (2006), 2–12 | DOI | MR | Zbl

[12] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl

[13] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl

[14] A. F. Beardon, Ch. Pommerenke, “The Poincaré metric of plane domains”, J. London Math. Soc. (2), 18:3 (1978), 475–483 | DOI | MR | Zbl

[15] F. G. Avkhadiev, “Solution of the generalized Saint Venant problem”, Sb. Math., 189:12 (1998), 1739–1748 | DOI | DOI | MR | Zbl

[16] T. Sugawa, “Uniformly perfect sets: analytic and geometric aspects”, Sugaku Expositions, 16:2 (2003), 225–242 | MR | Zbl

[17] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, N. J., 1951, xvi+279 pp. | MR | MR | Zbl | Zbl

[18] F. G. Avkhadiev, A. R. Kacimov, “Analytical solutions and estimates for microlevel flows”, J. Porous Media, 8:2 (2005), 125–148 | DOI

[19] R. G. Salahudinov, “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequal. Appl., 6:3 (2001), 253–260 | DOI | MR | Zbl

[20] D. A. Abramov, F. G. Avkhadiev, D. Kh. Giniyatova, “Versions of the Schwarz lemma for domain moments and the torsional rigidity”, Lobachevskii J. Math., 32:2 (2011), 149–158 | DOI | MR | Zbl