@article{SM_2015_206_11_a4,
author = {V. N. Temlyakov},
title = {Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness},
journal = {Sbornik. Mathematics},
pages = {1628--1656},
year = {2015},
volume = {206},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a4/}
}
TY - JOUR AU - V. N. Temlyakov TI - Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness JO - Sbornik. Mathematics PY - 2015 SP - 1628 EP - 1656 VL - 206 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2015_206_11_a4/ LA - en ID - SM_2015_206_11_a4 ER -
V. N. Temlyakov. Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1628-1656. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a4/
[1] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, 2011, xiv+418 pp. | DOI | MR | Zbl
[2] V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292 | DOI | MR | Zbl
[3] V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2-3 (2000), 213–227 | DOI | MR | Zbl
[4] V. N. Temlyakov, “Sparse approximation and recovery by greedy algorithms in Banach spaces”, Forum Math. Sigma, 2 (2014), e12, 26 pp. ; IMI preprint 2013:09, 2013, 27 pp.; 2013, arXiv: 1303.6811v1 | DOI | MR | Zbl
[5] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102 (1955), 37–40 | MR | Zbl
[6] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI | MR | Zbl
[7] V. E. Maiorov, “Trigonometric diameters of the Sobolev classes $W^r_p$ in the space $L_q$”, Math. Notes, 40:2 (1986), 590–597 | DOI | MR | Zbl
[8] R. A. DeVore, V. N. Temlyakov, “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl
[9] E. D. Gluskin, “Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces”, Math. USSR-Sb., 64:1 (1989), 85–96 | DOI | MR | Zbl
[10] Y. Makovoz, “On trigonometric $n$-widths and their generalization”, J. Approx. Theory, 41:4 (1984), 361–366 | DOI | MR | Zbl
[11] È. S. Belinskii, “Approximation by a “floating” system of exponentials on classes of smooth periodic functions”, Math. USSR-Sb., 60:1 (1988), 19–27 | DOI | MR | Zbl
[12] E. S. Belinskii, “Decomposition theorems and approximation by a “floating” system of exponentials”, Trans. Amer. Math. Soc., 350:1 (1998), 43–53 | DOI | MR | Zbl
[13] V. N. Temlyakov, “Approximation of periodic functions of several variables by bilinear forms”, Math. USSR-Izv., 28:1 (1987), 133–150 | DOI | MR | Zbl
[14] B. S. Kashin, V. N. Temlyakov, “On best $m$-term approximations and the entropy of sets in the space $L^1$”, Math. Notes, 56:5 (1994), 1137–1157 | DOI | MR | Zbl
[15] V. N. Temlyakov, “Nonlinear Kolmogorov widths”, Math. Notes, 63:6 (1998), 785–795 | DOI | DOI | MR | Zbl
[16] V. N. Temlyakov, “An inequality for the entropy numbers and its application”, J. Approx. Theory, 173 (2013), 110–121 | DOI | MR | Zbl
[17] S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, “Convergence of some greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 8:5 (2002), 489–505 | DOI | MR | Zbl
[18] V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292 | DOI | MR | Zbl
[19] A. S. Romanyuk, “Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables”, Izv. Math., 67:2 (2003), 265–302 | DOI | DOI | MR | Zbl
[20] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl
[21] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp. | MR | Zbl
[22] V. N. Temlyakov, “Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference”, Proc. Steklov Inst. Math., 189 (1990), 161–197 | MR | Zbl
[23] M. J. Donahue, C. Darken, L. Gurvits, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220 | DOI | MR | Zbl
[24] E. S. Belinskii, “Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of $\varepsilon$-entropy”, Anal. Math., 15:2 (1989), 67–74 | DOI | MR | Zbl
[25] V. N. Temlyakov, “An inequality for trigonometric polynomials and its application for estimating the entropy numbers”, J. Complexity, 11:2 (1995), 293–307 | DOI | MR | Zbl
[26] V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391 | DOI | MR | Zbl
[27] V. N. Temlyakov, “On a way of obtaining lower estimates for the errors of quadrature formulas”, Math. USSR-Sb., 71:1 (1992), 247–257 | DOI | MR | Zbl
[28] Dinh Dũng, T. Ullrich, “Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square”, Math. Nachr., 288:7 (2015), 743–762 | DOI | MR | Zbl
[29] V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 9:1 (1993), 41–59 | DOI | MR | Zbl
[30] V. N. Temlyakov, “Approximate recovery of periodic functions of several variables”, Math. USSR-Sb., 56:1 (1987), 249–261 | DOI | MR | Zbl
[31] V. N. Temlyakov, “An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths”, East J. Approx., 2:2 (1996), 253–262 | MR | Zbl