On centres of relatively free associative algebras with a~Lie nilpotency identity
Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627

Voir la notice de l'article provenant de la source Math-Net.Ru

We study central polynomials of a relatively free Lie nilpotent algebra $F^{(n)}$ of degree $n$. We prove a product theorem, which generalizes the well-known results of Latyshev and Volichenko. We construct generalized Hall polynomials, by using which we prove that the core centre of the algebra $F^{(n)}$ is nontrivial for any $n\geqslant 5$. We obtain a number of special results when $n=5$ and $6$. Bibliography: 27 titles.
Keywords: Lie nilpotency identity, proper polynomial, extended Grassmann algebra.
Mots-clés : centre of an algebra, core polynomial
@article{SM_2015_206_11_a3,
     author = {A. V. Grishin and S. V. Pchelintsev},
     title = {On centres of relatively free associative algebras with {a~Lie} nilpotency identity},
     journal = {Sbornik. Mathematics},
     pages = {1610--1627},
     publisher = {mathdoc},
     volume = {206},
     number = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - S. V. Pchelintsev
TI  - On centres of relatively free associative algebras with a~Lie nilpotency identity
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1610
EP  - 1627
VL  - 206
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/
LA  - en
ID  - SM_2015_206_11_a3
ER  - 
%0 Journal Article
%A A. V. Grishin
%A S. V. Pchelintsev
%T On centres of relatively free associative algebras with a~Lie nilpotency identity
%J Sbornik. Mathematics
%D 2015
%P 1610-1627
%V 206
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/
%G en
%F SM_2015_206_11_a3
A. V. Grishin; S. V. Pchelintsev. On centres of relatively free associative algebras with a~Lie nilpotency identity. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/