On centres of relatively free associative algebras with a Lie nilpotency identity
Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study central polynomials of a relatively free Lie nilpotent algebra $F^{(n)}$ of degree $n$. We prove a product theorem, which generalizes the well-known results of Latyshev and Volichenko. We construct generalized Hall polynomials, by using which we prove that the core centre of the algebra $F^{(n)}$ is nontrivial for any $n\geqslant 5$. We obtain a number of special results when $n=5$ and $6$. Bibliography: 27 titles.
Keywords: Lie nilpotency identity, proper polynomial, extended Grassmann algebra.
Mots-clés : centre of an algebra, core polynomial
@article{SM_2015_206_11_a3,
     author = {A. V. Grishin and S. V. Pchelintsev},
     title = {On centres of relatively free associative algebras with {a~Lie} nilpotency identity},
     journal = {Sbornik. Mathematics},
     pages = {1610--1627},
     year = {2015},
     volume = {206},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - S. V. Pchelintsev
TI  - On centres of relatively free associative algebras with a Lie nilpotency identity
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1610
EP  - 1627
VL  - 206
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/
LA  - en
ID  - SM_2015_206_11_a3
ER  - 
%0 Journal Article
%A A. V. Grishin
%A S. V. Pchelintsev
%T On centres of relatively free associative algebras with a Lie nilpotency identity
%J Sbornik. Mathematics
%D 2015
%P 1610-1627
%V 206
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/
%G en
%F SM_2015_206_11_a3
A. V. Grishin; S. V. Pchelintsev. On centres of relatively free associative algebras with a Lie nilpotency identity. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/

[1] V. N. Latyshev, “O vybore bazy v odnom T-ideale”, Sib. matem. zhurn., 4:5 (1963), 1122–1127 | MR | Zbl

[2] V. N. Latyshev, “O konechnoi porozhdennosti T-ideala s elementom $[{x}_1, {x}_2, {x}_3, {x}_4]$”, Sib. matem. zhurn., 6:6 (1965), 1432–1434 | MR | Zbl

[3] I. B. Volichenko, T-ideal, porozhdennyi elementom $[{x}_1,{x}_2,{x}_3,{x}_4]$, Preprint No 22, In-t matem. AN BSSR, Minsk, 1978, 13 pp.

[4] D. Krakowski, A. Regev, “The polynomial identities of the Grassman algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | DOI | MR | Zbl

[5] A. V. Grishin, “Primery ne konechnoi baziruemosti T-prostranstv i T-idealov v kharakteristike 2”, Fundament. i prikl. matem., 5:1 (1999), 101–118 | MR | Zbl

[6] A. V. Grishin, “On non-Spechtianness of the variety of associative rings that satisfy the identity ${x}^{32}=0$”, Electron. Res. Announc. Amer. Math. Soc., 6 (2000), 50–51 | DOI | MR | Zbl

[7] V. V. Shchigolev, “Examples of T-spaces with an infinite basis”, Sb. Math., 191:3 (2000), 459–476 | DOI | DOI | MR | Zbl

[8] A. V. Grishin, L. M. Tsybulya, “Two theorems on the structure of a relatively free Grassmann algebra”, Russian Math. Surveys, 63:4 (2008), 782–784 | DOI | DOI | MR | Zbl

[9] A. V. Grishin, L. M. Tsybulya, “On the multiplicative and T-space structure of the relatively free Grassmann algebra”, Sb. Math., 200:9 (2009), 1299–1338 | DOI | DOI | MR | Zbl

[10] A. V. Grishin, L. M. Tsybulya, “On the structure of a relatively free Grassmann algebra”, J. Math. Sci. (N. Y.), 171:2 (2010), 149–212 | DOI | MR | Zbl

[11] A. V. Grishin, L. M. Tsybulya, A. A. Shokola, “On T-spaces and relations in relatively free, Lie nilpotent, associative algebras”, J. Math. Sci., 177:6 (2011), 868–877 | DOI | MR | Zbl

[12] A. V. Grishin, “On the structure of the centre of a relatively free Grassmann algebra”, Russian Math. Surveys, 65:4 (2010), 781–782 | DOI | DOI | MR | Zbl

[13] A. V. Grishin, “On the center of a relatively free Lie-nilpotent algebra of index $4$”, Math. Notes, 91:1 (2012), 139–140 | DOI | DOI | MR | Zbl

[14] A. V. Grishin, “On T-spaces in a relatively free two-generated Lie nilpotent associative algebra of index $4$”, J. Math. Sci., 191:5 (2013), 686–690 | DOI | MR | Zbl

[15] P. Zh. Chiripov, P. N. Siderov, “O bazisakh tozhdestv nekotorykh mnogoobrazii assotsiativnykh algebr”, Pliska, 2 (1981), 103–115 | MR | Zbl

[16] A. R. Kemer, “Varieties and $Z_2$-graded algebras”, Math. USSR-Izv., 25:2 (1985), 359–374 | DOI | MR | Zbl

[17] A. R. Kemer, “Finite basis property of identities of associative algebras”, Algebra and Logic, 26:5 (1987), 362–397 | DOI | MR | Zbl

[18] A. N. Vaulin, “On one variety of alternative algebras”, J. Math. Sci., 140:2 (2007), 191–199 | DOI | MR | Zbl

[19] A. N. Vaulin, Mnogoobraziya alternativnykh algebr s tozhdestvom $[x_{1},x_{2},\dots,x_{5}]=0$, Avtoref. diss. ... kand. fiz.-matem. nauk, Mosk. ped. gos. un-t, M., 2005, 12 pp.

[20] S. V. Pchelintsev, “Isotopes of prime $(-1,1)$- and Jordan algebras”, Algebra and Logic, 49:3 (2010), 262–288 | DOI | MR | Zbl

[21] S. V. Pchelintsev, “On the commutator nilpotency step of strictly $(-1,1)$-algebras”, Math. Notes, 93:5 (2013), 756–762 | DOI | DOI | MR | Zbl

[22] S. V. Pchelintsev, “Commutator identities of the homotopes of $(-1,1)$-algebras”, Siberian Math. J., 54:2 (2013), 325–340 | DOI | MR | Zbl

[23] A. Kuz'min, “On the topological rank of the variety of right alternative metabelian Lie-nilpotent algebras”, J. Algebra Appl., 14:10 (2015), 1550144, 15 pp. | DOI | MR

[24] V. T. Filippov, “The central ideals of a free finitely generated alternative algebra”, Algebra and Logic, 25:4 (1986), 296–311 | DOI | MR | Zbl

[25] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965, xvii+508 pp. | MR | Zbl | Zbl

[26] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers (a division of John Wiley Sons), New York–London, 1962, ix+331 pp. | MR | MR | Zbl | Zbl

[27] A. Bapat, D. Jordan, “Lower central series of free algebras in symmetric tensor categories”, J. Algebra, 373 (2013), 299–311 | DOI | MR | Zbl