On centres of relatively free associative algebras with a~Lie nilpotency identity
Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627
Voir la notice de l'article provenant de la source Math-Net.Ru
We study central polynomials of a relatively free Lie nilpotent algebra $F^{(n)}$ of degree $n$. We prove a product theorem, which generalizes the well-known results of Latyshev and Volichenko. We construct generalized Hall polynomials, by using which we prove that the core centre of the algebra $F^{(n)}$ is nontrivial for any $n\geqslant 5$. We obtain a number of special results when $n=5$ and $6$.
Bibliography: 27 titles.
Keywords:
Lie nilpotency identity, proper polynomial, extended Grassmann algebra.
Mots-clés : centre of an algebra, core polynomial
Mots-clés : centre of an algebra, core polynomial
@article{SM_2015_206_11_a3,
author = {A. V. Grishin and S. V. Pchelintsev},
title = {On centres of relatively free associative algebras with {a~Lie} nilpotency identity},
journal = {Sbornik. Mathematics},
pages = {1610--1627},
publisher = {mathdoc},
volume = {206},
number = {11},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/}
}
TY - JOUR AU - A. V. Grishin AU - S. V. Pchelintsev TI - On centres of relatively free associative algebras with a~Lie nilpotency identity JO - Sbornik. Mathematics PY - 2015 SP - 1610 EP - 1627 VL - 206 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/ LA - en ID - SM_2015_206_11_a3 ER -
A. V. Grishin; S. V. Pchelintsev. On centres of relatively free associative algebras with a~Lie nilpotency identity. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1610-1627. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a3/