Mots-clés : Schläfli's formula
@article{SM_2015_206_11_a2,
author = {A. A. Gaifullin},
title = {The analytic continuation of volume and the {Bellows} conjecture in {Lobachevsky} spaces},
journal = {Sbornik. Mathematics},
pages = {1564--1609},
year = {2015},
volume = {206},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a2/}
}
A. A. Gaifullin. The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1564-1609. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a2/
[1] R. Bricard, “Mémoire sur la théorie de l'octaèdre articulé”, J. Math. Pures Appl. Sér. 5, 3 (1897), 113–148 | Zbl
[2] R. Connelly, “A counterexample to the rigidity conjecture for polyhedra”, Inst. Hautes Études Sci. Publ. Math., 47 (1977), 333–338 | DOI | MR | Zbl
[3] N. H. Kuiper, “Sphères polyèdriques flexibles dans $E^3$, d'après Robert Connelly”, Sèminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., 710, Springer, Berlin, 1979, 147–168, Exp. No. 514 | DOI | MR | MR | Zbl
[4] R. Connelly, “A flexible sphere”, Math. Intelligencer, 1:3 (1978/1979), 130–131 | DOI | MR | Zbl
[5] H. Stachel, “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries, Math. Appl. (N. Y.), 581, Springer, New York, 2006, 209–225 | DOI | MR | Zbl
[6] H. Stachel, “Flexible cross-polytopes in the Euclidean $4$-space”, J. Geom. Graph., 4:2 (2000), 159–167 | MR | Zbl
[7] A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113 ; arXiv: 1312.7608 | DOI | DOI | Zbl
[8] A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80 ; arXiv: 1501.06198 | DOI | DOI | Zbl
[9] R. Connelly, “Conjectures and open questions in rigidity”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR | Zbl
[10] I. Kh. Sabitov, “Ob'em mnogogrannika kak funktsiya ego metriki”, Fundament. i prikl. matem., 2:4 (1996), 1235–1246 | MR | Zbl
[11] I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | DOI | MR | Zbl
[12] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl
[13] R. Connelly, I. Sabitov, A. Walz, “The Bellows conjecture”, Beiträge Algebra Geom., 38:1 (1997), 1–10 | MR | Zbl
[14] A. A. Gaifullin, “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611 ; arXiv: 1108.6014 | DOI | MR | Zbl
[15] A. A. Gaifullin, “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220 ; arXiv: 1210.5408 | DOI | MR | Zbl
[16] V. Alexandrov, “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beiträge Algebra Geom., 38:1 (1997), 11–18 | MR | Zbl
[17] I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505 | DOI | DOI | MR | Zbl
[18] D. V. Alekseevskii, E. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 1–138 | DOI | MR | Zbl
[19] H. S. M. Coxeter, “The functions of Schläfli and Lobatschefsky”, Quart. J. Math., 6 (1935), 13–29 | DOI | Zbl
[20] K. Aomoto, “Analytic structure of Schläfli function”, Nagoya Math. J., 68 (1977), 1–16 | MR | Zbl
[21] L. Schläfli, “On the multiple integral $\int^n dx\,dy\dotsb \,dz$ whose limits are $p_1=a_1x+b_1y+\dots+h_1z>0$, $p_2>0$, ..., $p_n>0$, and $x^2+y^2+\dots+z^21$”, Quart. J. Pure Appl. Math., 2 (1858), 269–301; 3 (1860), 54–68, 97–108
[22] G. Sforza, “Spazi metrico-proiettivi”, Ricerche di Estensionimetria Integrale, Ser. III, VIII, Appendice (1907), 41–66 | Zbl
[23] I. Rivin, “Volumes of degenerating polyhedra – on a conjecture of J. W. Milnor”, Geom. Dedicata, 131:1 (2008), 73–85 ; arXiv: math/0512065 | DOI | MR | Zbl
[24] Feng Luo, “Continuity of the volume of simplices in classical geometries”, Commun. Contemp. Math., 8:3 (2006), 411–431 ; arXiv: math/0412208 | DOI | MR | Zbl
[25] R. Alexander, “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288:2 (1985), 661–678 | DOI | MR | Zbl
[26] F. J. Almgren, Jr., I. Rivin, “The mean curvature integral is invariant under bending”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 1–21 | DOI | MR | Zbl
[27] Yu. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22:3 (1999), 347–366 | DOI | MR | Zbl
[28] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13:2 (2005), 379–400 | DOI | MR | Zbl
[29] J. Murakami, A. Ushijima, “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1-2 (2005), 153–163 ; arXiv: math/0402087 | DOI | MR | Zbl
[30] D. A. Derevnin, A. D. Mednykh, “A formula for the volume of a hyperbolic tetrahedon”, Russian Math. Surveys, 60:2 (2005), 346–348 | DOI | DOI | MR | Zbl
[31] A. N. Parshin, “A generalization of the Jacobian variety”, Amer. Math. Soc. Transl. Ser. 2, 84, Amer. Math. Soc., Providence, R.I., 1969, 187–196 | MR | Zbl
[32] K.-T. Chen, “Iterated path integrals and generalized paths”, Bull. Amer. Math. Soc., 73:6 (1967), 935–938 | DOI | MR | Zbl
[33] K.-T. Chen, “Iterated integrals of differential forms and loop space homology”, Ann. of Math. (2), 97:2 (1973), 217–246 | DOI | MR | Zbl
[34] H. Whitney, “Elementary structure of real algebraic varieties”, Ann. of Math. (2), 66:3 (1957), 545–556 | DOI | MR | Zbl
[35] B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | MR | Zbl | Zbl
[36] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl
[37] I. R. Shafarevich, Basic algebraic geometry, Grundlehren Math. Wiss., 213, Springer-Verlag, New York–Heidelberg, 1974, xv+439 pp. | MR | MR | Zbl | Zbl