Mots-clés : binomial coefficients, Hirzebruch genus.
@article{SM_2015_206_11_a1,
author = {V. M. Buchstaber and A. V. Ustinov},
title = {Coefficient rings of formal group laws},
journal = {Sbornik. Mathematics},
pages = {1524--1563},
year = {2015},
volume = {206},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a1/}
}
V. M. Buchstaber; A. V. Ustinov. Coefficient rings of formal group laws. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1524-1563. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a1/
[1] N. H. Abel, “Méthode générale pour trouver des fonctions d'une seule quantité variable, lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables”, Oeuvres complètes, v. 1, Grondahl et Son, Christiania, 1881, 1–10 | MR | Zbl
[2] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. (N.F.), 9, Springer-Verlag, Berlin–Goẗtingen–Heidelberg, 1956, viii+165 pp. | MR | Zbl | Zbl
[3] N. H. Abel, “Untersuchung der Functionen zweier unabhängig veränderlichen Größen $x$ und $y$, wie $f(x,y)$, welche die Eigenschaft haben, daß $f(z,f(x,y))$ eine symmetrische Function von $z$, $x$ und $y$ ist”, J. Reine Angew. Math., 1826:1 (1826), 11–15 | DOI | Zbl
[4] J. Dieudonné, “Le calcul différential dans les corps de caractéristique $P>0$”, Proceedings of the International Congress of Mathematicians (Amsterdam, 1954), v. 1, Erven P. Noordhoff N.V., Groningen, 1957, 240–252 | Zbl
[5] M. Lazard, “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl
[6] T. Honda, “Formal groups and zeta-functions”, Osaka J. Math., 5:2 (1968), 199–213 | MR | Zbl
[7] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl
[8] Kobordizmy v Sovetskom Soyuze, 1967–1979, Topologicheskaya biblioteka, 4, eds. S. P. Novikov, I. A. Taimanov, M.–Izhevsk, Institut kompyuternykh issledovanii, 2011, 584 pp.
[9] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl
[10] V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl
[11] J. T. Tate, “The arithmetic of elliptic curves”, Invent. Math., 23:3 (1974), 179–206 | DOI | MR | Zbl
[12] V. M. Buchstaber, E. Yu. Bunkova, “Krichever formal groups”, Funct. Anal. Appl., 45:2 (2011), 99–116 | DOI | DOI | MR | Zbl
[13] V. M. Buchštaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116 | DOI | MR | Zbl
[14] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., 78, Academic Press, New York–London, 1978, xxii+573 pp. | MR | Zbl
[15] V. M. Bukhshtaber, A. N. Kholodov, “Formal groups, functional equations, and generalized cohomology theories”, Math. USSR-Sb., 69:1 (1991), 77–97 | DOI | MR | Zbl
[16] P. Busato, “Realization of Abel's universal formal group law”, Math. Z., 239:3 (2002), 527–561 | DOI | MR | Zbl
[17] F. Clarke, K. Johnson, “On the classifying ring for Abel formal group laws”, J. Pure Appl. Algebra, 213:7 (2009), 1290–1298 | DOI | MR | Zbl
[18] V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russian Math. Surveys, 45:3 (1990), 213–215 | DOI | MR | Zbl
[19] S. Ochanine, “Sur les genres multiplicatifs definis par des integrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl
[20] E. Witten, “Elliptic genera and quantum field theory”, Comm. Math. Phys., 109:4 (1987), 525–536 | DOI | MR | Zbl
[21] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl
[22] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR | Zbl
[23] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl
[24] M. Bakuradze, “On the Buchstaber formal group law and some related genera”, Proc. Steklov Inst. Math., 286 (2014), 1–15 | DOI | DOI | Zbl
[25] V. M. Buchstaber, T. E. Panov, Toric topolog, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[26] B. Ram, “Common factors of $\frac{n!}{m!(n-m)!}$ $(m = 1, 2,\dots,n-1)$”, J. Indian Math. Club, 1 (1909), 39–43, Bombay, India | Zbl
[27] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973, 280 pp. ; F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. (N.F.), 9, Springer-Verlag, Berlin–Goẗtingen–Heidelberg, 1956, viii+165 pp. ; Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, Springer Verlag, New York, 1966, x+232 с. | Zbl | MR | Zbl | MR | Zbl
[28] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl
[29] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5 (1996), 329–359 | DOI | MR | Zbl
[30] M. Bizley, “Derivation of a new formula for the number of minimal lattice paths from $(0,0)$ to $(k m, k n)$ having just $t$ contacts with the line $m y = n x$ and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line”, J. Inst. Actuar., 80 (1954), 55–62 | MR | Zbl
[31] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl
[32] A. Fröhlich, Formal groups, Lecture Notes in Math., 74, Springer-Verlag, Berlin–New York, 1968, iii+140 pp. | MR | Zbl
[33] V. M. Bukhshtaber, “Novye metody v teorii kobordizmov”, Dobavlenie k kn.: R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973, 185–186 | MR | Zbl
[34] J. Lurie, Chromatic homotopy theory, Lecture course given at Harvard University http://www.math.harvard.edu/~lurie/252x.html
[35] N. J. A. Sloane, The on-line encyclopedia of integer sequences, the sequence A001400 http://www.oeis.org/A001400
[36] E. E. Kummer, “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, J. Reine Angew. Math., 1852:44 (1852), 93–146 | DOI | MR | Zbl
[37] Zhi Lu, T. Panov, On toric generators in the unitary and special unitary bordism rings, arXiv: 1412.5084