@article{SM_2015_206_11_a0,
author = {E. A. Avksentyev},
title = {The {Great} {Emch} {Closure} {Theorem} and~a~combinatorial proof of {Poncelet's} {Theorem}},
journal = {Sbornik. Mathematics},
pages = {1509--1523},
year = {2015},
volume = {206},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_11_a0/}
}
E. A. Avksentyev. The Great Emch Closure Theorem and a combinatorial proof of Poncelet's Theorem. Sbornik. Mathematics, Tome 206 (2015) no. 11, pp. 1509-1523. http://geodesic.mathdoc.fr/item/SM_2015_206_11_a0/
[1] J. V. Poncelet, Traité des propriétés projectives des figures, v. I, 2nd ed., GauthierVillars, Paris, 1865, 498 pp. (first ed. in 1822) | MR
[2] H. Lebesgue, Les coniques, Gauthier-Villars, Paris, 1942, viii+190 pp. | Zbl
[3] W. Barth, Th. Bauer, “Poncelet theorems”, Exposition. Math., 14:2 (1996), 125–144 | MR | Zbl
[4] I. J. Schoenberg, “On Jacobi–Bertrand's proof of a theorem of Poncelet”, Studies in Pure Mathematics, Birkhäuser, Boston, 1983, 623–627 | DOI | MR | Zbl
[5] E. A. Avksentyev, “A universal measure for a pencil of conics and the Great Poncelet Theorem”, Sb. Math., 205:5 (2014), 613–632 | DOI | DOI | MR | Zbl
[6] M. Berger, Géométrie, v. 1–5, CEDIC, Paris; Nathan Information, Paris, 1977, 192 pp., 214 pp., 184 pp., 218 pp., 189 pp. | MR | MR | MR | MR | MR | MR | MR | Zbl | Zbl
[7] W. Barth, J. Michel, “Modular curves and Poncelet polygons”, Math. Ann., 295:1 (1993), 25–49 | DOI | MR | Zbl
[8] P. Griffiths, J. Harris, “On Cayley's explicit solution to Poncelet's porism”, Enseign. Math. (2), 24:1-2 (1978), 31–40 | MR | Zbl
[9] A. Emch, “Illustration of the elliptic integral of the first kind by a certain link-work”, Ann. of Math. (2), 1:1-4 (1899/1900), 81–92 | DOI | MR | Zbl
[10] O. Bottema, “Ein Schliessungssatz für zwei Kreise”, Elem. Math., 20 (1965), 1–7
[11] W. L. Black, H. C. Howland, B. Howland, “A theorem about zig-zags between two circles”, Amer. Math. Monthly, 81:7 (1974), 754–757 | DOI | MR | Zbl
[12] A. Emch, “An application of elliptic functions to Peaucellier's link-work (inversor)”, Ann. of Math. (2), 2:1-4 (1900/1901), 60–63 | DOI | MR | Zbl
[13] V. Yu. Protasov, “A generalization of Poncelet's theorem”, Russian Math. Surveys, 61:6 (2006), 1180–1182 | DOI | DOI | MR
[14] V. Yu. Protasov, “Generalized closing theorems”, Elem. Math., 66:3 (2011), 98–117 | DOI | MR | Zbl
[15] A. Hraskó, “Poncelet-type problems, an elementary approach”, Elem. Math., 55:2 (2000), 45–62 | DOI | MR | Zbl
[16] P. V. Bibikov, “Teoremy Shteinera i Ponsele v geometriyakh Evklida i Lobachevskogo”, Matem. prosv., ser. 3, 12, Izd-vo MTsNMO, M., 2008, 177–184
[17] I. M. Yaglom, Geometric transformations, v. III, IV, Anneli Lax New Math. Libr., 24, 44, Math. Assoc. America, Washington, DC, 1973, 2009, viii+237 pp., viii+285 pp. | MR | MR | Zbl | Zbl
[18] V. Yu. Protasov, “The Feuerbach theorem”, Quantum, 10:2 (1999), 4–9 | MR
[19] L. Halbeisen, N. Hungerbühler, “A simple proof of Poncelet's theorem (on the occasion of its bicentennial)”, Amer. Math. Monthly, 122:6 (2015), 537–551 | DOI | MR
[20] E. A. Avksent'ev, “Metric properties of Poncelet polygonal lines”, Moscow Univ. Math. Bull., 67:3 (2012), 116–120 | DOI | MR | Zbl