A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics
Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1463-1507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence. Bibliography: 18 titles.
Keywords: integrable system
Mots-clés : billiard, Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2015_206_10_a4,
     author = {V. V. Fokicheva},
     title = {A~topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics},
     journal = {Sbornik. Mathematics},
     pages = {1463--1507},
     year = {2015},
     volume = {206},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a4/}
}
TY  - JOUR
AU  - V. V. Fokicheva
TI  - A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1463
EP  - 1507
VL  - 206
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_10_a4/
LA  - en
ID  - SM_2015_206_10_a4
ER  - 
%0 Journal Article
%A V. V. Fokicheva
%T A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics
%J Sbornik. Mathematics
%D 2015
%P 1463-1507
%V 206
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2015_206_10_a4/
%G en
%F SM_2015_206_10_a4
V. V. Fokicheva. A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1463-1507. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a4/

[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[2] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[3] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[4] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 338 pp.

[5] V. V. Fokicheva, “Description of singularities for system "billiard in an ellipse”, Moscow Univ. Math. Bull., 67:5–6 (2012), 217–220 | DOI | MR | Zbl

[6] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | Zbl

[7] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl

[8] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[9] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[10] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[11] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[12] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[13] A. T. Fomenko, A. Yu. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR

[14] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[15] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[16] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl

[17] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl | Zbl

[18] N. S. Slavina, “Classification of the family of Kovalevskaya–Yehia systems up to Liouville equivalence”, Dokl. Math., 88:2 (2013), 537–540 | DOI | MR | Zbl