Exponential growth of codimensions of identities of algebras with unity
Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1440-1462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour is studied of exponentially bounded sequences of codimensions of identities of algebras with unity. A series of algebras is constructed for which the base of the exponential increases by exactly 1 when an outer unity is adjoined to the original algebra. It is shown that the PI-exponents of unital algebras can take any value greater than 2, and the exponents of finite-dimensional unital algebras form a dense subset in the domain $[2,\infty)$. Bibliography: 34 titles.
Keywords: identities, codimensions, exponential growth.
@article{SM_2015_206_10_a3,
     author = {M. V. Zaicev and D. Repov\v{s}},
     title = {Exponential growth of codimensions of identities of algebras with unity},
     journal = {Sbornik. Mathematics},
     pages = {1440--1462},
     year = {2015},
     volume = {206},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a3/}
}
TY  - JOUR
AU  - M. V. Zaicev
AU  - D. Repovš
TI  - Exponential growth of codimensions of identities of algebras with unity
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1440
EP  - 1462
VL  - 206
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_10_a3/
LA  - en
ID  - SM_2015_206_10_a3
ER  - 
%0 Journal Article
%A M. V. Zaicev
%A D. Repovš
%T Exponential growth of codimensions of identities of algebras with unity
%J Sbornik. Mathematics
%D 2015
%P 1440-1462
%V 206
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2015_206_10_a3/
%G en
%F SM_2015_206_10_a3
M. V. Zaicev; D. Repovš. Exponential growth of codimensions of identities of algebras with unity. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1440-1462. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a3/

[1] A. Giambruno, M. V. Zaicev, “Asymptotic growth of codimensions of identities of associative algebras”, Moscow Univ. Math. Bull., 69:3 (2014), 125–127 | DOI | Zbl

[2] A. Giambruno, M. Zaicev, “Growth of polynomial identities: is the sequence of codimensions eventually non-decreasing?”, Bull. Lond. Math. Soc., 46:4 (2014), 771–778 | DOI | MR | Zbl

[3] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Israel J. Math., 47:2-3 (1984), 246–250 | DOI | MR | Zbl

[4] A. Giambruno, A. Regev, M. V. Zaicev, “Simple and semisimple Lie algebras and codimension growth”, Trans. Amer. Math. Soc., 352:4 (2000), 1935–1946 | DOI | MR | Zbl

[5] A. Giambruno, I. Shestakov, M. Zaicev, “Finite-dimensional non-associative algebras and codimension growth”, Adv. in Appl. Math., 47:1 (2011), 125–139 | DOI | MR | Zbl

[6] Yu. P. Razmyslov, “Simple Lie algebras in varieties generated by Lie algebras of Cartan type”, Math. USSR-Izv., 31:3 (1988), 541–573 | DOI | MR | Zbl

[7] W. Specht, “Gesetze in Ringen. I”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[8] A. R. Kemer, “Asymptotic basis of identities of algebras with unit of the variety $\mathrm{Var}(M_2(F))$”, Soviet Math. (Iz. VUZ), 33:6 (1989), 71–76 | MR | Zbl

[9] V. Drensky, “Relations for the cocharacter sequences of $T$-ideals”, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., 131, Part 2, Amer. Math. Soc., Providence, RI, 1992, 285–300 | DOI | MR | Zbl

[10] V. Drensky, A. Regev, “Exact asymptotic behaviour of the codimensions of some P.I. algebras”, Israel J. Math., 96, Part A (1996), 231–242 | DOI | MR | Zbl

[11] A. Berele, A. Regev, “Asymptotic behaviour of codimensions of p. i. algebras satisfying Capelli identities”, Trans. Amer. Math. Soc., 360:10 (2008), 5155–5172 | DOI | MR | Zbl

[12] A. Berele, “Properties of hook Schur functions with applications to p. i. algebras”, Adv. in Appl. Math., 41:1 (2008), 52–75 | DOI | MR | Zbl

[13] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | DOI | MR | Zbl

[14] M. V. Zaitsev, “Identities of unitary finite-dimensional algebras”, Algebra Logic, 50:5 (2011), 381–404 | DOI | MR | Zbl

[15] A. Giambruno, M. Zaicev, “Proper identities, Lie identities and exponential codimension growth”, J. Algebra, 320:5 (2008), 1933–1962 | DOI | MR | Zbl

[16] A. Giambruno, M. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140:2 (1998), 145–155 | DOI | MR | Zbl

[17] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[18] O. E. Bezushchak, A. A. Beljaev, M. V. Zaicev, “Codimension growth of algebras with adjoint unit”, J. Math. Sci., 206:5 (2015), 462–473 | DOI | Zbl

[19] D. Repovš, M. Zaicev, “Numerical invariants of identities of unital algebras”, Comm. Algebra, 43:9 (2015), 3823–3839 | DOI | MR

[20] S. M. Ratseev, “Poisson algebras of polynomial growth”, Siberian Math. J., 54:3 (2013), 555–565 | DOI | MR | Zbl

[21] S. M. Ratseev, “Correlation of Poisson algebras and Lie algebras in the language of identities”, Math. Notes, 96:3-4 (2014), 538–547 | DOI | DOI | MR | Zbl

[22] Yu. A. Bakhturin, Identical relations in Lie algebras, Utrecht, VNU Science Press, b.v., 1987, x+309 pp. | MR | MR | Zbl | Zbl

[23] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl

[24] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005, xiv+352 pp. | DOI | MR | Zbl

[25] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11:2 (1972), 131–152 | DOI | MR | Zbl

[26] Yu. Bahturin, V. Drensky, “Graded polynomial identities of matrices”, Linear Algebra Appl., 357:1–3 (2002), 15–34 | DOI | MR | Zbl

[27] M. V. Zaicev, “Varieties of affine Kac–Moody algebras”, Math. Notes, 62:1 (1997), 80–86 | DOI | DOI | MR | Zbl

[28] S. P. Mishchenko, “Growth in varieties of Lie algebras”, Russian Math. Surveys, 45:6 (1990), 27–52 | DOI | MR | Zbl

[29] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978, v+156 pp. | MR | MR | Zbl | Zbl

[30] A. Giambruno, M. Zaicev, “On codimension growth of finite-dimensional Lie superalgebras”, J. Lond. Math. Soc. (2), 85:2 (2012), 534–548 | DOI | MR | Zbl

[31] M. V. Zaicev, D. Repovš, “A four-dimensional simple algebra with fractional PI-exponent”, Math. Notes, 95:4 (2014), 487–499 | DOI | DOI | MR | Zbl

[32] M. Lothaire, Algebraic combinatorics on words, Encyclopedia Math. Appl., 90, Cambridge Univ. Press, Cambridge, 2002, xiv+504 pp. | DOI | MR | Zbl

[33] A. Giambruno, S. Mishchenko, M. Zaicev, “Algebras with intermediate growth of the codimensions”, Adv. in Appl. Math., 37:3 (2006), 360–377 | DOI | MR | Zbl

[34] D. Krakowski, A. Regev, “The polynomial identities of the Grassmann algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | DOI | MR | Zbl