Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation
Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1410-1439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a statement of the Dirichlet problem which generalizes the notions of classical and weak solutions, in which a solution belongs to the space of $(n-1)$-dimensionally continuous functions with values in the space $L_p$. The property of $(n-1)$-dimensional continuity is similar to the classical definition of uniform continuity; however, instead of the value of a function at a point, it looks at the trace of the function on measures in a special class, that is, elements of the space $L_p$ with respect to these measures. Up to now, the problem in the statement under consideration has not been studied in sufficient detail. This relates first to the question of conditions on the right-hand side of the equation which ensure the solvability of the problem. The main results of the paper are devoted to just this question. We discuss the terms in which these conditions can be expressed. In addition, the way the behaviour of a solution near the boundary depends on the right-hand side is investigated. Bibliography: 47 titles.
Keywords: Dirichlet problem, boundary value.
Mots-clés : elliptic equation
@article{SM_2015_206_10_a2,
     author = {A. K. Gushchin},
     title = {Solvability of the {Dirichlet} problem for an~inhomogeneous second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1410--1439},
     year = {2015},
     volume = {206},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1410
EP  - 1439
VL  - 206
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/
LA  - en
ID  - SM_2015_206_10_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation
%J Sbornik. Mathematics
%D 2015
%P 1410-1439
%V 206
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/
%G en
%F SM_2015_206_10_a2
A. K. Gushchin. Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1410-1439. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/

[1] A. Liapounoff, “Sur certaines questions qui se rattachent au problème de Dirichlet”, J. Math. Pures Appl. (5), 4 (1898), 241–311 | Zbl

[2] H. Poincaré, “La méthode de Neumann et le probléme de Dirichlet”, Acta Math., 20:1 (1896), 59–142 | DOI | MR | Zbl

[3] H. Poincaré, “Sur les equations aux dérivées partielles de la physique mathématique”, Amer. J. Math., 12:3 (1890), 211–294 | DOI | MR | Zbl

[4] A. Korn, Lehrbuch der Potentialtheorie. Allgemeine Theorie des Potentials und der Potentialfunctionen im Raume, Ferd. Dümmler, Berlin, 1899, xiv+417 pp. | Zbl

[5] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, C. R. Acad. Sci. Paris, 128 (1899), 588–591 | Zbl

[6] W. Stekloff, “Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 2:2 (1900), 207–272 | DOI | MR | Zbl

[7] S. Zaremba, “Sur la théorie de l'équation de Laplace et les méthodes de Neumann et de Robin”, Bull. Acad. Sci. Cracovie, 41 (1901), 171–189 | Zbl

[8] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp. | MR | Zbl

[9] O. Hölder, Beiträge zur Potentialtheorie, Inaugural-Diss., Univ. Tübingen, 1882, 78 pp.

[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[11] A. Korn, Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Königl. Akad. Wiss., Berlin, 1909, 37 pp.

[12] E. Hopf, “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 19 (1927), 147–152 pp. | Zbl

[13] A. Korn, “Zwei Anwendungen der Methode der sukzessiven Annäherungen”, Schwarz Festschrift, Julius Springer, Berlin, 1914, 215–229 pp. | Zbl

[14] G. Giraud, “Sur le problème de Dirichlet généralisé (deuxième mémoire)”, Ann. Sci. École Norm. Sup. (3), 46 (1929), 131–245 | MR | Zbl

[15] G. Giraud, “Sur certains problèmes non linéaires de Neumann et sur certains problèmes non linéaires mixtes”, Ann. Sci. École Norm. Sup. (3), 49 (1932), 1–104 | MR | Zbl

[16] G. Giraud, “Sur certains problèmes non linéaires de Neumann et sur certains non linéaires mixtes”, Ann. Sci. École Norm. Sup., 49:3 (1932), 245–309 | MR | Zbl

[17] J. Schauder, “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Z., 38:1 (1934), 257–282 | DOI | MR | Zbl

[18] J. Schauder, “Numerische Abschätzungen in elliptischen linearen Differentialgleichungen”, Studia Math., 5 (1934), 34–42 | Zbl

[19] E. Hopf, “Über den funkitonalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung”, Math. Z., 34:1 (1932), 194–233 | DOI | MR | Zbl

[20] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl

[21] O. Perron, “Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$”, Math. Z., 18:1 (1923), 42–54 | DOI | MR | Zbl

[22] I. G. Petrovsky, Lectures on partial differential equations, Interscience Publishers, New York–London, 1954, x+245 pp. | MR | MR | Zbl

[23] N. Wiener, “The Dirichlet problem”, J. Math. Phys. Mass. Inst. Tech., 3 (1924), 127–146 | Zbl

[24] M. V. Keldysh, “On the solvability and stability of the Dirichlet problem”, Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, R.I., 1966, 1–73 | MR | Zbl

[25] O. A. Oleinik, “O zadache Dirikhle dlya uravnenii ellipticheskogo tipa”, Matem. sb., 24(66):1 (1949), 3–14 | MR | Zbl

[26] S. L. Sobolev, “O nekotorykh otsenkakh, otnosyaschikhsya k semeistvam funktsii, imeyuschikh proizvodnye, integriruemye s kvadratom”, Dokl. AN SSSR, 1:7 (1936), 267–270

[27] S. L. Sobolev, “Méthode nouvelle à résoudre le probléme de Cauchy pour les équations linéaires hyperboliques normales”, Matem. sb., 1(43):1 (1936), 39–72 | Zbl

[28] S. L. Sobolev, “On a theorem of functional analysis”, Amer. Math. Soc. Transl. Ser. 2, 2(34), Amer. Math. Soc., Providence, R.I., 1963, 39–68 | Zbl

[29] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, R.I., 1963, vii+239 pp. | MR | Zbl

[30] D. Hilbert, “Über das Dirichlet'sche Prinzip”, Jahresber. Deutsch. Math.-Ver., 8:1 (1900), 184–188 | Zbl

[31] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl

[32] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979, xii+362 pp. | MR | MR | Zbl | Zbl

[33] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[34] I. Nechas, “O resheniyakh ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka s neogranichennym integralom Dirikhle”, Chekhoslov. matem. zhurn., 10:2 (1960), 283–298 | MR | Zbl

[35] V. P. Mikhaĭlov, “Dirichlet's problem for a second-order elliptic equation”, Differential Equations, 12(1976):10 (1977), 1320-1329 | MR | Zbl

[36] I. M. Petrushko, “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl

[37] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[38] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[39] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[40] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[41] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76:3 (1962), 547–559 | DOI | MR | Zbl

[42] L. Hörmander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl

[43] A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl

[44] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[45] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | Zbl

[46] A. P. Morse, “A theory of covering and differentiation”, Trans. Amer. Math. Soc., 55 (1944), 205–235 | DOI | MR | Zbl

[47] V. G. Maz'ya, “On a degenerating problem with directional derivative”, Math. USSR-Sb., 16:3 (1972), 429–469 | DOI | MR | Zbl