Mots-clés : elliptic equation
@article{SM_2015_206_10_a2,
author = {A. K. Gushchin},
title = {Solvability of the {Dirichlet} problem for an~inhomogeneous second-order elliptic equation},
journal = {Sbornik. Mathematics},
pages = {1410--1439},
year = {2015},
volume = {206},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/}
}
A. K. Gushchin. Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1410-1439. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a2/
[1] A. Liapounoff, “Sur certaines questions qui se rattachent au problème de Dirichlet”, J. Math. Pures Appl. (5), 4 (1898), 241–311 | Zbl
[2] H. Poincaré, “La méthode de Neumann et le probléme de Dirichlet”, Acta Math., 20:1 (1896), 59–142 | DOI | MR | Zbl
[3] H. Poincaré, “Sur les equations aux dérivées partielles de la physique mathématique”, Amer. J. Math., 12:3 (1890), 211–294 | DOI | MR | Zbl
[4] A. Korn, Lehrbuch der Potentialtheorie. Allgemeine Theorie des Potentials und der Potentialfunctionen im Raume, Ferd. Dümmler, Berlin, 1899, xiv+417 pp. | Zbl
[5] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, C. R. Acad. Sci. Paris, 128 (1899), 588–591 | Zbl
[6] W. Stekloff, “Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 2:2 (1900), 207–272 | DOI | MR | Zbl
[7] S. Zaremba, “Sur la théorie de l'équation de Laplace et les méthodes de Neumann et de Robin”, Bull. Acad. Sci. Cracovie, 41 (1901), 171–189 | Zbl
[8] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp. | MR | Zbl
[9] O. Hölder, Beiträge zur Potentialtheorie, Inaugural-Diss., Univ. Tübingen, 1882, 78 pp.
[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[11] A. Korn, Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Königl. Akad. Wiss., Berlin, 1909, 37 pp.
[12] E. Hopf, “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 19 (1927), 147–152 pp. | Zbl
[13] A. Korn, “Zwei Anwendungen der Methode der sukzessiven Annäherungen”, Schwarz Festschrift, Julius Springer, Berlin, 1914, 215–229 pp. | Zbl
[14] G. Giraud, “Sur le problème de Dirichlet généralisé (deuxième mémoire)”, Ann. Sci. École Norm. Sup. (3), 46 (1929), 131–245 | MR | Zbl
[15] G. Giraud, “Sur certains problèmes non linéaires de Neumann et sur certains problèmes non linéaires mixtes”, Ann. Sci. École Norm. Sup. (3), 49 (1932), 1–104 | MR | Zbl
[16] G. Giraud, “Sur certains problèmes non linéaires de Neumann et sur certains non linéaires mixtes”, Ann. Sci. École Norm. Sup., 49:3 (1932), 245–309 | MR | Zbl
[17] J. Schauder, “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Z., 38:1 (1934), 257–282 | DOI | MR | Zbl
[18] J. Schauder, “Numerische Abschätzungen in elliptischen linearen Differentialgleichungen”, Studia Math., 5 (1934), 34–42 | Zbl
[19] E. Hopf, “Über den funkitonalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung”, Math. Z., 34:1 (1932), 194–233 | DOI | MR | Zbl
[20] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl
[21] O. Perron, “Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$”, Math. Z., 18:1 (1923), 42–54 | DOI | MR | Zbl
[22] I. G. Petrovsky, Lectures on partial differential equations, Interscience Publishers, New York–London, 1954, x+245 pp. | MR | MR | Zbl
[23] N. Wiener, “The Dirichlet problem”, J. Math. Phys. Mass. Inst. Tech., 3 (1924), 127–146 | Zbl
[24] M. V. Keldysh, “On the solvability and stability of the Dirichlet problem”, Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, R.I., 1966, 1–73 | MR | Zbl
[25] O. A. Oleinik, “O zadache Dirikhle dlya uravnenii ellipticheskogo tipa”, Matem. sb., 24(66):1 (1949), 3–14 | MR | Zbl
[26] S. L. Sobolev, “O nekotorykh otsenkakh, otnosyaschikhsya k semeistvam funktsii, imeyuschikh proizvodnye, integriruemye s kvadratom”, Dokl. AN SSSR, 1:7 (1936), 267–270
[27] S. L. Sobolev, “Méthode nouvelle à résoudre le probléme de Cauchy pour les équations linéaires hyperboliques normales”, Matem. sb., 1(43):1 (1936), 39–72 | Zbl
[28] S. L. Sobolev, “On a theorem of functional analysis”, Amer. Math. Soc. Transl. Ser. 2, 2(34), Amer. Math. Soc., Providence, R.I., 1963, 39–68 | Zbl
[29] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, R.I., 1963, vii+239 pp. | MR | Zbl
[30] D. Hilbert, “Über das Dirichlet'sche Prinzip”, Jahresber. Deutsch. Math.-Ver., 8:1 (1900), 184–188 | Zbl
[31] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl
[32] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979, xii+362 pp. | MR | MR | Zbl | Zbl
[33] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[34] I. Nechas, “O resheniyakh ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka s neogranichennym integralom Dirikhle”, Chekhoslov. matem. zhurn., 10:2 (1960), 283–298 | MR | Zbl
[35] V. P. Mikhaĭlov, “Dirichlet's problem for a second-order elliptic equation”, Differential Equations, 12(1976):10 (1977), 1320-1329 | MR | Zbl
[36] I. M. Petrushko, “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl
[37] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[38] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl
[39] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl
[40] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl
[41] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76:3 (1962), 547–559 | DOI | MR | Zbl
[42] L. Hörmander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl
[43] A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl
[44] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl
[45] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | Zbl
[46] A. P. Morse, “A theory of covering and differentiation”, Trans. Amer. Math. Soc., 55 (1944), 205–235 | DOI | MR | Zbl
[47] V. G. Maz'ya, “On a degenerating problem with directional derivative”, Math. USSR-Sb., 16:3 (1972), 429–469 | DOI | MR | Zbl