Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1340-1374

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is concerned with the Nelson-Hadwiger classical\linebreak problem of finding the chromatic numbers of distance graphs in $\mathbb R^n$. Most consideration is given to the class of graphs $G(n, r,s)=(V(n, r), E(n,r,s))$ defined as follows: \begin{gather*} V(n, r)=\bigl\{\mathbf{x}=(x_1,\dots,x_n) : x_i\in\{0, 1\},\, x_1+\dots+x_n=r\bigr\}, \\ E(n,r,s)=\bigl\{\{\mathbf{x}, \mathbf{y}: (\mathbf{x}, \mathbf{y})=s\}\bigr\}, \end{gather*} where $(\mathbf{x}, \mathbf{y})$ is the Euclidean inner product. In particular, the chromatic number of $G(n,3,1)$ was recently found by Balogh, Kostochka and Raigorodskii. The objects of the study are the random subgraphs $\mathscr{G}(G(\!n,r,s\!), p)$ whose edges are independently taken from the set $E(n,r,s)$, each with probability $p$. The independence number and the chromatic number of such graphs are estimated both from below and from above. In the case when $r-s$ is a prime power and $r\leq 2s+1$, the order of growth of $\alpha(\mathscr{G}(G(n,r,s), p))$ and $\chi(\mathscr{G}(G(n,r,s), p))$ is established. Bibliography: 51 titles.
Keywords: random graph, distance graph, independence number, chromatic number.
@article{SM_2015_206_10_a0,
     author = {L. I. Bogolubsky and A. S. Gusev and M. M. Pyaderkin and A. M. Raigorodskii},
     title = {Independence numbers and chromatic numbers of the random subgraphs of some distance graphs},
     journal = {Sbornik. Mathematics},
     pages = {1340--1374},
     publisher = {mathdoc},
     volume = {206},
     number = {10},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/}
}
TY  - JOUR
AU  - L. I. Bogolubsky
AU  - A. S. Gusev
AU  - M. M. Pyaderkin
AU  - A. M. Raigorodskii
TI  - Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1340
EP  - 1374
VL  - 206
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/
LA  - en
ID  - SM_2015_206_10_a0
ER  - 
%0 Journal Article
%A L. I. Bogolubsky
%A A. S. Gusev
%A M. M. Pyaderkin
%A A. M. Raigorodskii
%T Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
%J Sbornik. Mathematics
%D 2015
%P 1340-1374
%V 206
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/
%G en
%F SM_2015_206_10_a0
L. I. Bogolubsky; A. S. Gusev; M. M. Pyaderkin; A. M. Raigorodskii. Independence numbers and chromatic numbers of the random subgraphs of some distance graphs. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1340-1374. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/