Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1340-1374
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is concerned with the Nelson-Hadwiger classical\linebreak problem of finding the chromatic numbers of distance graphs in $\mathbb R^n$. Most consideration is given to the class of graphs $G(n, r,s)=(V(n, r), E(n,r,s))$ defined as follows:
\begin{gather*}
V(n, r)=\bigl\{\mathbf{x}=(x_1,\dots,x_n) : x_i\in\{0, 1\},\, x_1+\dots+x_n=r\bigr\},
\\
E(n,r,s)=\bigl\{\{\mathbf{x}, \mathbf{y}: (\mathbf{x}, \mathbf{y})=s\}\bigr\},
\end{gather*}
where $(\mathbf{x}, \mathbf{y})$ is the Euclidean inner product. In particular, the chromatic number of $G(n,3,1)$ was recently found by Balogh, Kostochka and Raigorodskii. The objects of the study are the random subgraphs $\mathscr{G}(G(\!n,r,s\!), p)$ whose edges are independently taken from the set $E(n,r,s)$, each with probability $p$. The independence number and the chromatic number of such graphs are estimated both from below and from above. In the case when $r-s$ is a prime power and $r\leq 2s+1$, the order of growth of $\alpha(\mathscr{G}(G(n,r,s), p))$ and $\chi(\mathscr{G}(G(n,r,s), p))$ is established.
Bibliography: 51 titles.
Keywords:
random graph, distance graph, independence number, chromatic number.
@article{SM_2015_206_10_a0,
author = {L. I. Bogolubsky and A. S. Gusev and M. M. Pyaderkin and A. M. Raigorodskii},
title = {Independence numbers and chromatic numbers of the random subgraphs of some distance graphs},
journal = {Sbornik. Mathematics},
pages = {1340--1374},
publisher = {mathdoc},
volume = {206},
number = {10},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/}
}
TY - JOUR AU - L. I. Bogolubsky AU - A. S. Gusev AU - M. M. Pyaderkin AU - A. M. Raigorodskii TI - Independence numbers and chromatic numbers of the random subgraphs of some distance graphs JO - Sbornik. Mathematics PY - 2015 SP - 1340 EP - 1374 VL - 206 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/ LA - en ID - SM_2015_206_10_a0 ER -
%0 Journal Article %A L. I. Bogolubsky %A A. S. Gusev %A M. M. Pyaderkin %A A. M. Raigorodskii %T Independence numbers and chromatic numbers of the random subgraphs of some distance graphs %J Sbornik. Mathematics %D 2015 %P 1340-1374 %V 206 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/ %G en %F SM_2015_206_10_a0
L. I. Bogolubsky; A. S. Gusev; M. M. Pyaderkin; A. M. Raigorodskii. Independence numbers and chromatic numbers of the random subgraphs of some distance graphs. Sbornik. Mathematics, Tome 206 (2015) no. 10, pp. 1340-1374. http://geodesic.mathdoc.fr/item/SM_2015_206_10_a0/