Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{Gms}$ be the group of transformations of a Lebesgue space leaving the measure quasi-invariant. Let $\mathrm{Ams}$ be a subgroup of it consisting of transformations preserving the measure. We describe canonical forms of double cosets of $\mathrm{Gms}$ by the subgroup $\mathrm{Ams}$ and show that all continuous $\mathrm{Ams}$-bi-invariant functions on $\mathrm{Gms}$ are functionals of the distribution of a Radon-Nikodym derivative. Bibliography: 14 titles.
Keywords: transformations of measure spaces, Polish group, double cosets.
Mots-clés : Lebesgue space
@article{SM_2014_205_9_a5,
     author = {Yu. A. Neretin},
     title = {Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1357--1372},
     publisher = {mathdoc},
     volume = {205},
     number = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1357
EP  - 1372
VL  - 205
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/
LA  - en
ID  - SM_2014_205_9_a5
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant
%J Sbornik. Mathematics
%D 2014
%P 1357-1372
%V 205
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/
%G en
%F SM_2014_205_9_a5
Yu. A. Neretin. Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/