Bi-invariant functions on the group of transformations leaving a measure quasi-invariant
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathrm{Gms}$ be the group of transformations of a Lebesgue space leaving the measure quasi-invariant. Let $\mathrm{Ams}$ be a subgroup of it consisting of transformations preserving the measure. We describe canonical forms of double cosets of $\mathrm{Gms}$ by the subgroup $\mathrm{Ams}$ and show that all continuous $\mathrm{Ams}$-bi-invariant functions on $\mathrm{Gms}$ are functionals of the distribution of a Radon-Nikodym derivative. Bibliography: 14 titles.
Keywords: transformations of measure spaces, Polish group, double cosets.
Mots-clés : Lebesgue space
@article{SM_2014_205_9_a5,
     author = {Yu. A. Neretin},
     title = {Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1357--1372},
     year = {2014},
     volume = {205},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Bi-invariant functions on the group of transformations leaving a measure quasi-invariant
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1357
EP  - 1372
VL  - 205
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/
LA  - en
ID  - SM_2014_205_9_a5
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Bi-invariant functions on the group of transformations leaving a measure quasi-invariant
%J Sbornik. Mathematics
%D 2014
%P 1357-1372
%V 205
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/
%G en
%F SM_2014_205_9_a5
Yu. A. Neretin. Bi-invariant functions on the group of transformations leaving a measure quasi-invariant. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/

[1] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | MR | Zbl

[2] Yu. A. Neretin, “Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. VII, Zap. nauchn. sem. POMI, 292, POMI, SPb., 2002, 62–91 ; J. Math. Sci. (N. Y.), 126:2 (2005), 1077–1094 | MR | Zbl | DOI

[3] Yu. Neretin, “Symmetries of Gaussian measures and operator colligations”, J. Funct. Anal., 263:3 (2012), 782–802 | DOI | MR | Zbl

[4] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995, xviii+402 pp. | DOI | MR | Zbl

[5] Yu. A. Neretin, “Categories of bistochastic measures, and representations of some infinite-dimensional groups”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219 | DOI | MR | Zbl

[6] V. Pestov, Dynamics of infinite-dimensional groups. The Ramsey–Dvoretzky–Milman phenomenon, Univ. Lecture Ser., 40, Amer. Math. Soc., Providence, RI, 2006, viii+192 pp. | MR | Zbl

[7] D. A. Raikov, “O popolnenii topologicheskikh grupp”, Izv. AN SSSR. Ser. matem., 10:6 (1946), 513–528 | MR | Zbl

[8] N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III. Topologie générale. Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Sci. Indust., 1143, 3ème éd., rev. et augm., Hermann, Paris, 1960, 236 pp. | MR | MR | Zbl

[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972, xvii+325 pp. | MR | Zbl

[10] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, UMN, 12:2(74) (1957), 169–174 | MR | Zbl

[11] R. J. Fleming, J. E. Jamison, Isometries on Banach spaces: function spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129, Chapman Hall/CRC, Boca Raton, FL, 2003, x+197 pp. | MR | Zbl

[12] G. Köthe, Topological vector spaces, v. I, Grundlehren Math. Wiss., 159, Springer-Verlag New York Inc., New York, 1969, xv+456 pp. | MR | Zbl

[13] Yu. A. Neretin, “On the boundary of the group of transformations leaving a measure quasi-invariant”, Sb. Math., 204:8 (2013), 1161–1194 | DOI | DOI | MR | Zbl

[14] A. D. Alexandrov, A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman Hall/CRC, Boca Raton, FL, 2006, xiv+426 pp. | MR | MR | Zbl | Zbl