Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathrm{Gms}$ be the group of transformations of a Lebesgue space leaving the measure quasi-invariant. Let $\mathrm{Ams}$ be a subgroup of it consisting of transformations preserving the measure. We describe canonical forms of double cosets of $\mathrm{Gms}$ by the subgroup $\mathrm{Ams}$ and show that all continuous $\mathrm{Ams}$-bi-invariant functions on $\mathrm{Gms}$ are functionals of the distribution of a Radon-Nikodym derivative.
Bibliography: 14 titles.
Keywords:
transformations of measure spaces, Polish group, double cosets.
Mots-clés : Lebesgue space
Mots-clés : Lebesgue space
@article{SM_2014_205_9_a5,
author = {Yu. A. Neretin},
title = {Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant},
journal = {Sbornik. Mathematics},
pages = {1357--1372},
publisher = {mathdoc},
volume = {205},
number = {9},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/}
}
Yu. A. Neretin. Bi-invariant functions on the group of transformations leaving a~measure quasi-invariant. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1357-1372. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a5/