An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1334-1356
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight $e^{-2nQ(x)}p_g(x)/\sqrt{\prod_{j=1}^{2p}(x-e_j)}$ coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus $g=p-1$. Here $e_1$, $Q(x)=x^{2m}+\dotsb$ is a monic polynomial of even degree $2m$ and $p_g$ is a certain auxiliary polynomial of degree $p-1$.
Bibliography: 23 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
varying weight, strong asymptotics
Mots-clés : orthonormal polynomials, uniform distributions.
                    
                  
                
                
                Mots-clés : orthonormal polynomials, uniform distributions.
@article{SM_2014_205_9_a4,
     author = {A. V. Komlov and S. P. Suetin},
     title = {An asymptotic formula for polynomials orthonormal with respect to a~varying {weight.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1334--1356},
     publisher = {mathdoc},
     volume = {205},
     number = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/}
}
                      
                      
                    TY - JOUR AU - A. V. Komlov AU - S. P. Suetin TI - An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II JO - Sbornik. Mathematics PY - 2014 SP - 1334 EP - 1356 VL - 205 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/ LA - en ID - SM_2014_205_9_a4 ER -
A. V. Komlov; S. P. Suetin. An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1334-1356. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/
