Mots-clés : orthonormal polynomials, uniform distributions.
@article{SM_2014_205_9_a4,
author = {A. V. Komlov and S. P. Suetin},
title = {An asymptotic formula for polynomials orthonormal with respect to a~varying {weight.~II}},
journal = {Sbornik. Mathematics},
pages = {1334--1356},
year = {2014},
volume = {205},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/}
}
A. V. Komlov; S. P. Suetin. An asymptotic formula for polynomials orthonormal with respect to a varying weight. II. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1334-1356. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/
[1] A. V. Komlov, S. P. Suetin, “An asymptotic formula for polynomials orthonormal with respect to a varying weight”, Trans. Moscow Math. Soc., 2012 (2012), 139–159 | MR | Zbl
[2] A. V. Komlov, S. P. Suetin, “Widom's formula for the leading coefficient of a polynomial which is orthonormal with respect to a varying weight”, Russian Math. Surveys, 67:1 (2012), 183–185 | DOI | DOI | MR | Zbl
[3] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl
[4] P. D. Lax, C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. I”, Comm. Pure Appl. Math., 36:3 (1983), 253–290 | DOI | MR | Zbl
[5] P. D. Lax, C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. II”, Comm. Pure Appl. Math., 36:5 (1983), 571–593 | DOI | MR | Zbl
[6] P. D. Lax, C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. III”, Comm. Pure Appl. Math., 36:6 (1983), 809–829 | DOI | MR | Zbl
[7] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[8] E. A. Rakhmanov, “On the asymptotic properties of polynomials that are orthogonal on the real axis”, Soviet Math. Dokl., 24 (1981), 505–507 | MR | Zbl
[9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York Univ., Courant Inst. Math. Sci., New York, NY; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl
[11] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl
[12] J. Nuttall, “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl
[13] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | DOI | MR | Zbl
[14] S. P. Suetin, “Comparative asymptotic behavior of solutions and trace formulas for a class of difference equations”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S96–S137 | DOI | DOI | MR | Zbl
[15] A. I. Aptekarev, V. Van Assshe, S. P. Suetin, “Skalyarnaya zadacha Rimana i silnaya asimptotika approksimatsii Pade i ortogonalnykh mnogochlenov”, Preprinty IPM, 2001, 026
[16] N. I. Ahiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl
[17] N. I. Ahiezer, “Continuous analogues of orthogonal polynomials on a system of intervals”, Soviet Math. Dokl., 2 (1961), 1409–1412 | MR | Zbl
[18] F. Peherstorfer, “Zeros of polynomials orthogonal on several intervals”, Int. Math. Res. Not., 2003, no. 7, 361–385 | DOI | MR | Zbl
[19] A. I. Aptekarev, W. Van Assche, “Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight”, J. Approx. Theory, 129:2 (2004), 129–166 | DOI | MR | Zbl
[20] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957, viii+307 pp. | MR | MR | Zbl | Zbl
[21] E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl
[22] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl
[23] E. M. Chirka, “Rimanovy poverkhnosti”, Lekts. kursy NOTs, 1, MIAN, M., 2006, 3–105 | DOI