An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1334-1356

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight $e^{-2nQ(x)}p_g(x)/\sqrt{\prod_{j=1}^{2p}(x-e_j)}$ coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus $g=p-1$. Here $e_1$, $Q(x)=x^{2m}+\dotsb$ is a monic polynomial of even degree $2m$ and $p_g$ is a certain auxiliary polynomial of degree $p-1$. Bibliography: 23 titles.
Keywords: varying weight, strong asymptotics
Mots-clés : orthonormal polynomials, uniform distributions.
@article{SM_2014_205_9_a4,
     author = {A. V. Komlov and S. P. Suetin},
     title = {An asymptotic formula for polynomials orthonormal with respect to a~varying {weight.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1334--1356},
     publisher = {mathdoc},
     volume = {205},
     number = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/}
}
TY  - JOUR
AU  - A. V. Komlov
AU  - S. P. Suetin
TI  - An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1334
EP  - 1356
VL  - 205
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/
LA  - en
ID  - SM_2014_205_9_a4
ER  - 
%0 Journal Article
%A A. V. Komlov
%A S. P. Suetin
%T An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II
%J Sbornik. Mathematics
%D 2014
%P 1334-1356
%V 205
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/
%G en
%F SM_2014_205_9_a4
A. V. Komlov; S. P. Suetin. An asymptotic formula for polynomials orthonormal with respect to a~varying weight.~II. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1334-1356. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a4/