@article{SM_2014_205_9_a3,
author = {A. E. Zvonarev and A. M. Raigorodskii and D. V. Samirov and A. A. Kharlamova},
title = {On the chromatic number of a~space with forbidden equilateral triangle},
journal = {Sbornik. Mathematics},
pages = {1310--1333},
year = {2014},
volume = {205},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a3/}
}
TY - JOUR AU - A. E. Zvonarev AU - A. M. Raigorodskii AU - D. V. Samirov AU - A. A. Kharlamova TI - On the chromatic number of a space with forbidden equilateral triangle JO - Sbornik. Mathematics PY - 2014 SP - 1310 EP - 1333 VL - 205 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a3/ LA - en ID - SM_2014_205_9_a3 ER -
%0 Journal Article %A A. E. Zvonarev %A A. M. Raigorodskii %A D. V. Samirov %A A. A. Kharlamova %T On the chromatic number of a space with forbidden equilateral triangle %J Sbornik. Mathematics %D 2014 %P 1310-1333 %V 205 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2014_205_9_a3/ %G en %F SM_2014_205_9_a3
A. E. Zvonarev; A. M. Raigorodskii; D. V. Samirov; A. A. Kharlamova. On the chromatic number of a space with forbidden equilateral triangle. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1310-1333. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a3/
[1] A. M. Raigorodskii, “On the chromatic number of a space”, Russian Math. Surveys, 55:2 (2000), 351–352 | DOI | DOI | MR | Zbl
[2] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:1 (1972), 1–24 | DOI | MR | Zbl
[3] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | DOI | MR | Zbl
[4] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460 | DOI | Zbl
[5] A. M. Raigorodskii, “On the chromatic numbers of spheres in Euclidean spaces”, Dokl. Math., 81:3 (2010), 379–382 | DOI | MR | Zbl
[6] A. M. Raigorodskii, “On the chromatic numbers of spheres in ${\mathbb R}^n$”, Combinbatorica, 32:1 (2012), 111–123 | DOI | MR | Zbl
[7] A. B. Kupavskii, “On the chromatic number of ${\mathbb R}^n$ with a set of forbidden distances”, Dokl. Math., 82:3 (2010), 963–966 | DOI | MR | Zbl
[8] A. B. Kupavskiy, “On the chromatic number of ${\mathbb R}^n$ with an arbitrary norm”, Discrete Math., 311:6 (2011), 437–440 | DOI | MR | Zbl
[9] A. B. Kupavskii, “On the colouring of spheres embedded in $\mathbb R^n$”, Sb. Math., 202:6 (2011), 859–886 | DOI | DOI | MR | Zbl
[10] A. M. Raigorodskii, “The chromatic number of a space with the metric $l_q$”, Russian Math. Surveys, 59:5 (2004), 973–975 | DOI | DOI | MR | Zbl
[11] E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801 | DOI | DOI | MR | Zbl
[12] A. M. Raigorodskii, I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances”, Sb. Math., 199:4 (2008), 579–612 | DOI | DOI | MR | Zbl
[13] N. G. Moshchevitin, A. M. Raigorodskii, “Colorings of the space $\mathbb R^n$ with several forbidden distances”, Math. Notes, 81:5 (2007), 656–664 | DOI | DOI | MR | Zbl
[14] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s dvumya zapreschennymi rasstoyaniyami”, Dokl. RAN, 408:5 (2006), 601–604 | MR
[15] P. Frankl, V. Rödl, “All triangles are Ramsey”, Trans. Amer. Math. Soc., 297:2 (1986), 777–779 | DOI | MR | Zbl
[16] P. Frankl, V. Rödl, “Forbidden intersections”, Trans. Amer. Math. Soc., 300:1 (1987), 259–286 | DOI | MR | Zbl
[17] P. Frankl, V. Rödl, “A partition property of simplices in Euclidean space”, J. Amer. Math. Soc., 3:1 (1990), 1–7 | DOI | MR | Zbl
[18] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., New York, John Wiley Sons, Inc., 1990, xii+196 pp. | MR | Zbl
[19] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, Parts I, II, North-Holland Mathematical Library, 16, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977 | MR | MR | Zbl | Zbl
[20] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, New York, 2005, xii+499 pp. | DOI | MR | Zbl
[21] A. Soifer, The mathematical coloring book. Mathematics of coloring and the colorful life of its creators, Springer, New York, 2009, xxx+607 pp. | DOI | MR | Zbl
[22] D. E. Raiskii, “Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts”, Math. Notes, 7:3 (1970), 194–196 | DOI | MR | Zbl
[23] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, 1999), v. II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 649–666 | MR | Zbl
[24] A. M. Raigorodskii, D. V. Samirov, “Chromatic numbers of spaces with forbidden monochromatic triangles”, Math. Notes, 93:1 (2013), 163–171 | DOI | DOI | MR | Zbl
[25] A. M. Raigorodskii, D. V. Samirov, “Novye nizhnie otsenki khromaticheskogo chisla prostranstva s zapreschennymi ravnobedrennymi treugolnikami”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya, 125 (2013), 252–268
[26] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl
[27] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl
[28] P. Frankl, R. M. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | DOI | MR | Zbl
[29] E. I. Ponomarenko, A. M. Raigorodskii, “Uluchshenie teoremy Frankla–Uilsona o chisle reber gipergrafa s zapretami na peresecheniya”, Dokl. RAN, 454:3 (2014), 268–269 | DOI | MR
[30] E. I. Ponomarenko, A. M. Raigorodskii, “New estimates in the problem of the number of edges in a hypergraph with forbidden intersections”, Problems Inform. Transmission, 49:4 (2013), 384–390 | DOI
[31] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007, 138 pp. | Zbl