Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1279-1309
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the extension of tests for superpositional measurability,
Filippov's implicit function lemma and the Scorza Dragoni property to set-valued
(and, as a corollary, to single-valued) mappings that fail to satisfy
the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. To obtain the corresponding results the
space $\mathrm{clos}_{\varnothing}(X)$ of all closed
subsets (including the empty set) of an arbitrary metric space $X$
is introduced;
a metric on $\mathrm{clos}_{\varnothing}(X)$ is proposed; the space $\mathrm{clos}_{\varnothing}(X)$ is shown to be complete whenever the
original space $X$ is; a criterion for convergence of a sequence is put forward; mappings with values in
$\mathrm{clos}_\varnothing(X)$ are studied. Some results on
set-valued mappings satisfying the Carathéodory conditions
and having compact values in $\mathbb R^n$ are shown to hold for
mappings with values in $\mathrm{clos}_\varnothing(\mathbb R^n)$, measurable in the first argument, and continuous in the proposed metric in the second argument.
Bibliography: 22 titles.
Keywords:
superpositional measurability, Filippov's implicit function lemma,
Scorza Dragoni property, the space of closed subsets of a metric space,
set-valued mapping.
@article{SM_2014_205_9_a2,
author = {E. S. Zhukovskii and E. A. Panasenko},
title = {Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$},
journal = {Sbornik. Mathematics},
pages = {1279--1309},
publisher = {mathdoc},
volume = {205},
number = {9},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/}
}
TY - JOUR
AU - E. S. Zhukovskii
AU - E. A. Panasenko
TI - Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$
JO - Sbornik. Mathematics
PY - 2014
SP - 1279
EP - 1309
VL - 205
IS - 9
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/
LA - en
ID - SM_2014_205_9_a2
ER -
E. S. Zhukovskii; E. A. Panasenko. Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1279-1309. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/