@article{SM_2014_205_9_a2,
author = {E. S. Zhukovskii and E. A. Panasenko},
title = {Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$},
journal = {Sbornik. Mathematics},
pages = {1279--1309},
year = {2014},
volume = {205},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/}
}
E. S. Zhukovskii; E. A. Panasenko. Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1279-1309. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/
[1] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011, 224 pp. | MR | Zbl
[2] I. V. Shragin, “Superpozitsionnaya izmerimost”, Izv. vuzov. Matem., 1975, no. 1(152), 82–92 | MR | Zbl
[3] E. S. Zhukovskii, E. A. Panasenko, “Ob odnoi metrike v prostranstve nepustykh zamknutykh podmnozhestv prostranstva ${\mathbb R}^n$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 1, 15–25
[4] E. S. Zhukovskiy, E. A. Panasenko, “On multi-valued maps with images in the space of closed subsets of a metric space”, Fixed Point Theory Appl., 2013, no. 10, 21 pp. | DOI | MR | Zbl
[5] E. Michael, “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 71 (1951), 152–182 | DOI | MR | Zbl
[6] G. Matheron, Random sets and integral geometry, Wiley Ser. Probab. Math. Statist., Wiley, New York–London–Sydney, 1975, xxiii+261 pp. | MR | MR | Zbl
[7] E. A. Panasenko, E. L. Tonkov, “Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems”, Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S204–S221 | DOI | MR
[8] M. V. Bebutov, “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byul. mekh.-mat. fakulteta MGU, 5 (1941), 1–52
[9] K. Deimling, Multivalued differential equations, De Gruyter Ser. Nonlinear Anal. Appl., 1, de Gruyter, Berlin, 1992, xii+260 pp. | MR | Zbl
[10] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl
[11] J.-P. Aubin, H. Frankowska, Set-valued analysis, Systems Control Found. Appl., 2, Birkhäuser, Boston, MA, 1990, xx+461 pp. | MR | Zbl
[12] V. Z. Tsalyuk, “Superposition measurability of multivalued functions”, Math. Notes, 43:1 (1988), 58–60 | DOI | MR | Zbl
[13] J. Appell, E. De Pascale, P. P. Zabrejko, “Multivalued superposition operators”, Rend. Sem. Mat. Univ. Padova, 86(1991) (1992), 213–231 | MR | Zbl
[14] C. Castaing, “Sur les équations différentielles multivoques”, C. R. Acad. Sci. Paris Sér. A–B, 263 (1966), A63–A66 | MR | Zbl
[15] A. Cellina, “A selection theorem”, Rend. Sem. Mat. Univ. Padova, 55(1976) (1977), 143–149 | MR | Zbl
[16] Z. Artstein, K. Prikry, “Carathéodory selections and the Scorza–Dragoni property”, J. Math. Anal. Appl., 127:2 (1987), 540–547 | DOI | MR | Zbl
[17] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 2. Matem. Mekh. Astr. Fiz. Khim., 1959, no. 2, 25–32 | MR | Zbl
[18] V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | MR | Zbl
[19] A. Kucia, “Scorza–Dragoni type theorems”, Fund. Math., 138:3 (1991), 197–203 | MR | Zbl
[20] D. Averna, “Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections”, Boll. Un. Mat. Ital. A (7), 8:2 (1994), 193–202 | MR | Zbl
[21] I. T. Kiguradze, B. L. Shekhter, “Singular boundary-value problems for second-order ordinary differential equations”, J. Soviet Math., 43:2 (1988), 2340–2417 | DOI | MR | Zbl
[22] E. A. Panasenko, “Dinamicheskaya sistema sdvigov v prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 2, 28–33