Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1279-1309

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the extension of tests for superpositional measurability, Filippov's implicit function lemma and the Scorza Dragoni property to set-valued (and, as a corollary, to single-valued) mappings that fail to satisfy the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. To obtain the corresponding results the space $\mathrm{clos}_{\varnothing}(X)$ of all closed subsets (including the empty set) of an arbitrary metric space $X$ is introduced; a metric on $\mathrm{clos}_{\varnothing}(X)$ is proposed; the space $\mathrm{clos}_{\varnothing}(X)$ is shown to be complete whenever the original space $X$ is; a criterion for convergence of a sequence is put forward; mappings with values in $\mathrm{clos}_\varnothing(X)$ are studied. Some results on set-valued mappings satisfying the Carathéodory conditions and having compact values in $\mathbb R^n$ are shown to hold for mappings with values in $\mathrm{clos}_\varnothing(\mathbb R^n)$, measurable in the first argument, and continuous in the proposed metric in the second argument. Bibliography: 22 titles.
Keywords: superpositional measurability, Filippov's implicit function lemma, Scorza Dragoni property, the space of closed subsets of a metric space, set-valued mapping.
@article{SM_2014_205_9_a2,
     author = {E. S. Zhukovskii and E. A. Panasenko},
     title = {Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$},
     journal = {Sbornik. Mathematics},
     pages = {1279--1309},
     publisher = {mathdoc},
     volume = {205},
     number = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/}
}
TY  - JOUR
AU  - E. S. Zhukovskii
AU  - E. A. Panasenko
TI  - Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1279
EP  - 1309
VL  - 205
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/
LA  - en
ID  - SM_2014_205_9_a2
ER  - 
%0 Journal Article
%A E. S. Zhukovskii
%A E. A. Panasenko
%T Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$
%J Sbornik. Mathematics
%D 2014
%P 1279-1309
%V 205
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/
%G en
%F SM_2014_205_9_a2
E. S. Zhukovskii; E. A. Panasenko. Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1279-1309. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a2/