The topology of integrable systems with incomplete fields
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1264-1278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra $\mathfrak{sl}(3)$ is taken as an example.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable systems, incomplete fields
Mots-clés : Liouville's theorem, Lie algebras.
                    
                  
                
                
                Mots-clés : Liouville's theorem, Lie algebras.
@article{SM_2014_205_9_a1,
     author = {K. R. Aleshkin},
     title = {The topology of integrable systems with incomplete fields},
     journal = {Sbornik. Mathematics},
     pages = {1264--1278},
     publisher = {mathdoc},
     volume = {205},
     number = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_9_a1/}
}
                      
                      
                    K. R. Aleshkin. The topology of integrable systems with incomplete fields. Sbornik. Mathematics, Tome 205 (2014) no. 9, pp. 1264-1278. http://geodesic.mathdoc.fr/item/SM_2014_205_9_a1/
