Mots-clés : billiard, Liouville equivalence
@article{SM_2014_205_8_a5,
author = {V. V. Fokicheva},
title = {Classification of billiard motions in domains bounded by confocal parabolas},
journal = {Sbornik. Mathematics},
pages = {1201--1221},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/}
}
V. V. Fokicheva. Classification of billiard motions in domains bounded by confocal parabolas. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1201-1221. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/
[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[2] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | MR | MR | Zbl | Zbl
[3] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 338 pp.
[6] V. V. Fokicheva, “Description of singularities for system ‘billiard in an ellipse’”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[7] V. V. Fokicheva, “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami i giperbolami”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 2014 (to appear)
[8] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl
[9] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl
[10] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[11] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[12] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[13] A. T. Fomenko, A. Yu. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Dordrecht, 2014, 3–21 | DOI
[14] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[15] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[16] E. Gutkin, “Billiard dynamics: a survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl