Classification of billiard motions in domains bounded by confocal parabolas
Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1201-1221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the billiard dynamical system in a domain bounded by confocal parabolas. We describe such domains in which the billiard problem can be correctly stated. In each such domain we prove the integrability for the system, analyse the arising Liouville foliation, and calculate the invariant of Liouville equivalence — the so-called marked molecule. It turns out that billiard systems in certain parabolic domains have the same closures of solutions (integral trajectories) as the systems of Goryachev-Chaplygin-Sretenskii and Joukowski at suitable energy levels. We also describe the billiard motion in noncompact domains bounded by confocal parabolas, namely, we describe the topology of the Liouville foliation in terms of rough molecules. Bibliography: 16 titles.
Keywords: integrable system, Fomenko-Zieschang molecule.
Mots-clés : billiard, Liouville equivalence
@article{SM_2014_205_8_a5,
     author = {V. V. Fokicheva},
     title = {Classification of billiard motions in domains bounded by confocal parabolas},
     journal = {Sbornik. Mathematics},
     pages = {1201--1221},
     year = {2014},
     volume = {205},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/}
}
TY  - JOUR
AU  - V. V. Fokicheva
TI  - Classification of billiard motions in domains bounded by confocal parabolas
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1201
EP  - 1221
VL  - 205
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/
LA  - en
ID  - SM_2014_205_8_a5
ER  - 
%0 Journal Article
%A V. V. Fokicheva
%T Classification of billiard motions in domains bounded by confocal parabolas
%J Sbornik. Mathematics
%D 2014
%P 1201-1221
%V 205
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/
%G en
%F SM_2014_205_8_a5
V. V. Fokicheva. Classification of billiard motions in domains bounded by confocal parabolas. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1201-1221. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a5/

[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[2] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | MR | MR | Zbl | Zbl

[3] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 338 pp.

[6] V. V. Fokicheva, “Description of singularities for system ‘billiard in an ellipse’”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl

[7] V. V. Fokicheva, “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami i giperbolami”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 2014 (to appear)

[8] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl

[9] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[10] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[11] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[12] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[13] A. T. Fomenko, A. Yu. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Dordrecht, 2014, 3–21 | DOI

[14] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[15] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[16] E. Gutkin, “Billiard dynamics: a survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl