@article{SM_2014_205_8_a4,
author = {V. P. Filimonov},
title = {Covering sets in~$\mathbb{R}^m$},
journal = {Sbornik. Mathematics},
pages = {1160--1200},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/}
}
V. P. Filimonov. Covering sets in $\mathbb{R}^m$. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1160-1200. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/
[1] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl
[2] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | DOI | MR | Zbl
[3] A. M. Raigorodskii, “Around Borsuk's hypothesis”, J. Math. Sci. (N. Y.), 154:4 (2008), 604–623 | DOI | MR | Zbl
[4] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 202–247 | MR | Zbl
[5] V. G. Boltjansky, I. Ts. Gohberg, Results and problems in combinatorial geometry, Cambridge Univ. Press, Cambridge, 1985, vii+108 pp. | DOI | MR | MR | Zbl | Zbl
[6] V. Boltyanski, H. Martini, P. S. Soltan, Excursions into combinatorial geometry, Universitext, Springer-Verlag, Berlin, 1997, xiv+418 pp. | DOI | MR | Zbl
[7] A. Yu. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosv., ser. 3, 8, Izd-vo MTsNMO, M., 2004, 186–221
[8] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007, 138 pp. | Zbl
[9] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, 1999), v. II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 649–666 | MR | Zbl
[10] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, New York, 2005, xii+499 pp. | DOI | MR | Zbl
[11] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1988, xxviii+663 pp. | DOI | MR | MR | MR | Zbl
[12] A. Schuermann, F. Vallentin, Methods in the local theory of packing and covering lattices, 2008, arXiv: math/0412320v2
[13] V. P. Filimonov, “Covering planar sets”, Sb. Math., 201:8 (2010), 1217–1248 | DOI | DOI | MR | Zbl
[14] H. Lenz, “Über die Bedeckung ebener Punktmengen durch solche kleineren Durchmessers”, Arch. Math. (Basel), 7:1 (1956), 34–40 | DOI | MR | Zbl
[15] V. P. Filimonov, “Division codes and an area theorem”, Dokl. Math., 79:3 (2009), 345–348 | DOI | MR | Zbl
[16] V. P. Filimonov, “Small deviation theorem for division codes”, Dokl. Math., 81:2 (2010), 278–281 | DOI | MR | Zbl
[17] V. P. Filimonov, “A rational periodicity theorem for division codes”, Dokl. Math., 82:2 (2010), 726–729 | DOI | MR | Zbl
[18] V. P. Filimonov, “Real periodicity theorem for division codes”, Dokl. Math., 83:1 (2011), 84–89 | DOI | MR | Zbl
[19] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, 47, Cambridge Univ. Press, 1958, viii+136 pp. | MR | Zbl
[20] B. Weissbach, “Polyhedral covers”, Intuitive geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, 48, North-Holland, Amsterdam, 1987, 639–646 | MR | Zbl
[21] V. V. Makeev, “Universal coverings and projections of bodies of constant width”, J. Soviet Math., 59:2 (1992), 750–752 | DOI | MR | Zbl
[22] H. Jung, “Ueber die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257 | DOI | Zbl
[23] J. Pál, “Über ein elementares Variationsproblem”, Danske Vid. Selsk. Mat.-Fys. Medd., 3:2 (1920), 35 | Zbl
[24] A. Heppes, “Térbeli ponthalmazok felosztása kisebb átméröjü részhalmazok összegére”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7 (1957), 413–416 | MR | Zbl
[25] B. Grünbaum, “A simple proof of Borsuk's conjecture in three dimensions”, Proc. Cambridge Philos. Soc., 53:3 (1957), 776–778 | DOI | MR | Zbl
[26] V. V. Makeev, “Affine images of the rhombo-dodecahedron that are circumscribed about a three-dimensional convex body”, J. Math. Sci. (New York), 100:3 (2000), 2307–2309 | MR | Zbl
[27] H. Lenz, “Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinern Durchmesser”, Jber. Deutsch. Math. Verein., 58 (1956), 87–97 | MR | Zbl
[28] M. Dembiński, M. Lassak, “Covering plane sets with sets of three times less diameter”, Demonstratio Math., XVIII:2 (1985), 517–526 | MR | Zbl
[29] H. Hadwiger, H. Debrunner, Kombinatorische Geometrie in der Ebene, Monographies de “L'Enseignement Mathématique”, 2, Institut de Mathématiques, Université, Genève, 1960, 122 pp. | MR | MR | Zbl
[30] A. Heppes, “Covering a planar domain with sets of small diameter”, Period. Math. Hungar., 53:1-2 (2006), 157–168 | DOI | MR | Zbl
[31] A. B. Kupavskii, A. M. Raigorodskii, “Partition of three-dimensional sets into five parts of smaller diameter”, Math. Notes, 87:2 (2010), 218–229 | DOI | DOI | MR | Zbl
[32] A. Heppes, “Decomposing the 2-sphere into domains of smallest possible diameter”, Period. Math. Hungar., 36:2-3 (1998), 171–180 | DOI | MR | Zbl
[33] M. Lassak, “An estimate concerning Borsuk partition problem”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30:9-10 (1982), 449–451 | MR | Zbl
[34] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, no. 1, Springer, Berlin, 1934, vii+164 pp. | MR | Zbl
[35] Yu. D. Burago, V. A. Zalgaller, Geometric inequalities, Grundlehren Math. Wiss., 285, Springer-Verlag, Berlin, 1988, xiv+331 pp. | DOI | MR | MR | Zbl | Zbl
[36] D. Shklyarskii, “O razbieniyakh dvumernoi sfery”, Matem. sb., 16(58):2 (1945), 125–128 | MR | Zbl
[37] J. Matoušek, Using the Borsuk–Ulam theorem. Lectures on topological methods in combinatorics and geometry, Universitext, Springer-Verlag, Berlin, 2003, xii+196 pp. | DOI | MR | Zbl
[38] P. Leopadi, Distributing points on the sphere: Partitions, separation, quadrature and energy, Ph.D. dissertation, University of New South Wales, 2006, 232 pp. http://maths-people.anu.edu.au/~leopardi/Leopardi-Sphere-PhD-Thesis.pdf
[39] A. Postnikov, “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not. IMRN, 6 (2009), 1026–1106 | DOI | MR | Zbl
[40] A. P. Poyarkov, A. I. Garber, “Permutable polyhedra”, Moscow Univ. Math. Bull., 61:2 (2006), 1–6 | MR | Zbl
[41] P. Gaiha, S. K. Gupta, “Adjacent vertices on a permutohedron”, SIAM J. Appl. Math., 32:2 (1977), 323–327 | DOI | MR | Zbl
[42] J. Santmyer, “For all possible distances look to the permutohedron”, Math. Mag., 80:2 (2007), 120–125 | MR | Zbl
[43] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. Leningradsk. un-ta. Ser. matem., fiz., khim., 9:2 (1954), 11–31 | MR
[44] I. G. Aramanovich, R. S. Guter, L. A. Lyusternik, I. L. Raukhvarger, M. I. Skanavi, A. R. Yanpol'skij, Mathematical analysis: Differentiation and integration, International Series of Monographs on Pure and Applied Mathematics, 81, Pergamon Press, Oxford, 1965, xi+322 pp. | Zbl
[45] G. I. Arkhipov, V. A. Sadovnichii, V. N. Chubarikov, Lektsii po matematicheskomu analizu, 3-e izd., Drofa, M., 2003, 640 pp.
[46] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Grundlehren Math. Wiss., 65, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1953, x+197 pp. | DOI | MR | Zbl
[47] M. N. Bleicher, “Lattice coverings of $n$-space by spheres”, Canad. J. Math, 14 (1962), 632–650 | DOI | MR | Zbl
[48] R. P. Bambah, “On lattice coverings by spheres”, Proc. Nat. Inst. Sci. India, 20 (1954), 25–52 | MR | Zbl
[49] E. Hlawka, “Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper”, Monatsh. Math., 53:2 (1949), 81–131 | DOI | MR | Zbl
[50] R. Kershner, “The number of circles covering a set”, Amer. J. Math., 61:3 (1939), 665–671 | DOI | MR | Zbl
[51] B. N. Delone, S. S. Ryshkov, “Solution of the problem on the least dense lattice covering of a 4-dimensional space by equal spheres”, Soviet Math. Dokl., 4 (1964), 1333–1334 | MR | Zbl
[52] E. P. Baranovskii, S. S. Ryshkov, “Primitive five-dimensional parallelohedra”, Soviet Math. Dokl., 14:5 (1973), 1391–1395 | MR | Zbl
[53] H. Davenport, “The covering of space by spheres”, Rend. Circ. Mat. Palermo (2), 1:1 (1952), 92–107 | DOI | MR | Zbl
[54] G. L. Watson, “The covering of space by spheres”, Rend. Circ. Mat. Palermo (2), 5:1 (1956), 93–100 | DOI | MR | Zbl
[55] C. A. Rogers, “Lattice coverings of space”, Mathematika, 6:1 (1959), 33–39 | DOI | MR | Zbl
[56] W. Blaschke, Kreis und Kugel, Veit, Leipzig, 1916, x+169 pp. | MR | Zbl | Zbl
[57] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig, 1914, viii+476 pp. | MR | Zbl
[58] B. Bollobás, “An extension of the isoperimetric inequality on the sphere”, Elem. Math., 44:5 (1989), 121–124 | MR | Zbl