Covering sets in~$\mathbb{R}^m$
Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1160-1200

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates questions related to Borsuk's classical problem of partitioning a set in Euclidean space into subsets of smaller diameter, as well as to the well-known Nelson-Erdős-Hadwiger problem on the chromatic number of a Euclidean space. The results of the work are obtained using combinatorial and geometric methods alike. A new approach to the investigation of such problems is suggested; it leads to a collection of results which significantly improve all results known so far. Bibliography: 58 titles.
Keywords: chromatic number, Borsuk's problem, diameter of a set, covering of a plane set, universal covering sets and systems.
@article{SM_2014_205_8_a4,
     author = {V. P. Filimonov},
     title = {Covering sets in~$\mathbb{R}^m$},
     journal = {Sbornik. Mathematics},
     pages = {1160--1200},
     publisher = {mathdoc},
     volume = {205},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/}
}
TY  - JOUR
AU  - V. P. Filimonov
TI  - Covering sets in~$\mathbb{R}^m$
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1160
EP  - 1200
VL  - 205
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/
LA  - en
ID  - SM_2014_205_8_a4
ER  - 
%0 Journal Article
%A V. P. Filimonov
%T Covering sets in~$\mathbb{R}^m$
%J Sbornik. Mathematics
%D 2014
%P 1160-1200
%V 205
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/
%G en
%F SM_2014_205_8_a4
V. P. Filimonov. Covering sets in~$\mathbb{R}^m$. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1160-1200. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a4/