Mots-clés : non-Lipschitz domains.
@article{SM_2014_205_8_a3,
author = {A. I. Tyulenev},
title = {Boundary values of functions in {a~Sobolev} space with {Muckenhoupt} weight on some {non-Lipschitz} domains},
journal = {Sbornik. Mathematics},
pages = {1133--1159},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a3/}
}
A. I. Tyulenev. Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1133-1159. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a3/
[1] V. G. Maz'ya, Yu. V. Netrusov, S. V. Poborchi, “Boundary values of functions from Sobolev spaces in some non-Lipschitzian domains”, St. Petersburg Math. J., 11:1 (2000), 107–128 | MR | Zbl
[2] P. Shvartsman, “On the boundary values of Sobolev $W_{p}^{1}$-functions”, Adv. Math., 225:4 (2010), 2162–2221 | DOI | MR | Zbl
[3] M. Yu. Vasil'chik, I. M. Pupyshev, “An integral representation and boundary behavior of functions defined in a domain with a peak”, Siberian Adv. Math., 21:2 (2011), 130–159 | DOI | MR | Zbl
[4] A. I. Tyulenev, “Description of traces of functions in the Sobolev space with a Muckenhoupt weight”, Proc. Steklov Inst. Math., 284 (2014), 280–295 | DOI | DOI
[5] V. S. Rychkov, “Littlewood–Paley theory and function spaces with $A_{p}^{\mathrm{loc}}$-weights”, Math. Nachr., 224:1 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[6] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl
[7] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl
[8] V. I. Burenkov, Sobolev spaces on domains, Teubner-Texte Math., 137, B. G. Teubner, Stuttgart, 1998, 312 pp. | DOI | MR | Zbl
[9] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N.J., 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[11] Seng-Kee Chua, “Extension theorems on weighted Sobolev spaces”, Indiana Univ. Math. J., 41:4 (1992), 1027–1076 | DOI | MR | Zbl