Mots-clés : moment map
@article{SM_2014_205_8_a2,
author = {D. V. Novikov},
title = {Topological features of the {Sokolov} integrable case on the {Lie} algebra $\mathrm{so}(3,1)$},
journal = {Sbornik. Mathematics},
pages = {1107--1132},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a2/}
}
D. V. Novikov. Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1107-1132. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a2/
[1] H. Poincaré, “Sur la précession des corps déformables”, Bull. Astron., 27 (1910), 321–356
[2] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 384 pp. | MR | Zbl
[3] A. V. Borisov, I. S. Mamaev, V. V. Sokolov, “A new integrable case on $\mathrm{so}(4)$”, Dokl. Phys., 46:12 (2001), 888–889 | DOI | MR
[4] V. V. Sokolov, “One class of quadratic $\mathrm{so}(4)$ Hamiltonians”, Dokl. Math., 69:1 (2004), 108–111 | MR | Zbl
[5] V. V. Sokolov, “A new integrable case for the Kirchhoff equation”, Theoret. and Math. Phys., 129:1 (2001), 1335–1340 | DOI | DOI | MR | Zbl
[6] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh sistem differentsialnykh uravnenii, Faktorial, M.; Izd-vo Udmurt. un-ta, Izhevsk, 1995, 448 pp. | MR | Zbl
[7] G. Haghighatdoost, A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 200:6 (2009), 899–921 | DOI | DOI | MR | Zbl
[8] G. Haghighatdoost, “The bifurcation diagram of a class of Hamiltonians on the algebra $\mathrm{so}(4)$”, Moscow Univ. Math. Bull., 60:6 (2005), 1–8 | MR | Zbl
[9] Gh. Haghighatdoost, “The topology of isoenergetic surfaces for the Sokolov integrable case in the Lie algebra $\mathrm{so}(4)$”, Dokl. Math., 71:2 (2005), 256–259 | MR | Zbl
[10] D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$”, Sb. Math., 202:5 (2011), 749–781 | DOI | DOI | MR | Zbl
[11] D. V. Novikov, “The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Moscow Univ. Math. Bull., 66:4 (2011), 181–184 | DOI | MR
[12] D. V. Novikov, Topologiya nekotorykh novykh integriruemykh sluchaev na algebrakh Li $\mathrm{so}(4)$, $\mathrm{so}(3,1)$ i $\mathrm{e}(3)$, Diplomnaya rabota, 2007
[13] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[14] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[15] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl
[16] A. T. Fomenko, H. Zieschang, “On the topology of three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl
[17] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[18] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[19] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[20] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988, 200 pp. | MR
[21] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[22] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Trudy seminara po vekt. i tenz. analizu, 25 (1993), 23–109 | Zbl
[23] P. E. Ryabov, “Bifurcations of first integrals in the Sokolov case”, Theoret. and Math. Phys., 134:2 (2003), 181–197 | DOI | DOI | MR | Zbl
[24] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl