@article{SM_2014_205_8_a1,
author = {V. M. Kaplitskii},
title = {A differential equation for {Lerch's} transcendent and associated symmetric operators in {Hilbert} space},
journal = {Sbornik. Mathematics},
pages = {1080--1106},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/}
}
V. M. Kaplitskii. A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1080-1106. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/
[1] J. B. Conrey, “The Riemann hypothesis”, Notices Amer. Math. Soc., 50:3 (2003), 341–353 | MR | Zbl
[2] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl
[3] B. S. Pavlov, L. D. Faddeev, “Teoriya rasseyaniya i avtomorfnye funktsii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, Izd-vo «Nauka», Leningrad. otd., L., 1972, 161–193 | MR | Zbl
[4] I. V. Volovich, V. V. Kozlov, “Square integrable solutions to the Klein–Gordon equation on a manifold”, Dokl. Math., 73:3 (2006), 441–444 | DOI | MR | Zbl
[5] V. V. Kozlov, I. V. Volovich, “Finite action Klein–Gordon solutions on Loretzian manifolds”, Int. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357 | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl
[7] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. I, II, Frederick Ungar Publishing Co., New York, 1961, 1963, xi+147 pp., v+218 pp. | MR | MR | MR | Zbl | Zbl
[8] S. L. Sobolev, “O dvizhenii simmetrichnogo volchka s polostyu, napolnenoi zhidkostyu”, PMTF, 3 (1960), 20–55 | Zbl
[9] V. I. Arnol'd, “Small denominators. I. Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. Ser. 2, 46, Amer. Math. Soc., Providence, RI, 1965, 213–284 | MR | Zbl
[10] S. D. Troitskaya, “On non-almost-periodicity of solutions of the Sobolev problem in domains with edges”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 97–124 | DOI | MR | Zbl
[11] M. V. Fokin, “Hamiltonian systems in the theory of small oscillations of a rotating ideal fluid. I”, Siberian Adv. Math., 12:1 (2002), 1–50 | MR | MR | Zbl | Zbl
[12] M. V. Fokin, “Hamiltonian systems in the theory of small oscillations of a rotating ideal fluid. II”, Siberian Adv. Math., 12:2 (2002), 1–37 | MR | MR | Zbl
[13] V. P. Burskii, A. S. Zhedanov, “Dirichlet and Neuman problems for string equation, Poncelet problem and Pell–Abel equation”, SIGMA, 2 (2006), 041, 5 pp. | DOI | MR | Zbl
[14] V. M. Kaplitskii, “Asymptotic behaviour of the discrete spectrum of a quasi-periodic boundary value problem for a two-dimensional hyperbolic equation”, Sb. Math., 200:2 (2009), 215–228 | DOI | DOI | MR | Zbl
[15] V. M. Kaplitskiǐ, “Asymptotics of the distribution of eigenvalues of a selfadjoint second order hyperbolic differential operator on the two-dimensional torus”, Siberian Math. J., 51:5 (2010), 830–846 | DOI | MR | Zbl