A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1080-1106
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The function $\Psi(x, y, s)=e^{iy}\Phi(-e^{iy},s,x)$, where $\Phi(z,s,v)$ is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation:
$$
L[\Psi]=\frac{\partial^2\Psi}{\partial x\,\partial
y}+i(x-1)\frac{\partial\Psi}{\partial x}+\frac{i}{2}\Psi=\lambda\Psi,
$$
where $s={1}/{2}+i\lambda$. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space $L_2(\Pi)$, where $\Pi=(0,1)\times(0,2\pi)$. We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of $\Psi(x,y,s)$. We discuss sufficient conditions for these formal
solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Lerch's transcendent, Hilbert space, symmetric operator, eigenfunction.
                    
                    
                    
                  
                
                
                @article{SM_2014_205_8_a1,
     author = {V. M. Kaplitskii},
     title = {A differential equation for {Lerch's} transcendent and associated symmetric operators in {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {1080--1106},
     publisher = {mathdoc},
     volume = {205},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Kaplitskii TI - A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space JO - Sbornik. Mathematics PY - 2014 SP - 1080 EP - 1106 VL - 205 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/ LA - en ID - SM_2014_205_8_a1 ER -
V. M. Kaplitskii. A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1080-1106. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/
