A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1080-1106

Voir la notice de l'article provenant de la source Math-Net.Ru

The function $\Psi(x, y, s)=e^{iy}\Phi(-e^{iy},s,x)$, where $\Phi(z,s,v)$ is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation: $$ L[\Psi]=\frac{\partial^2\Psi}{\partial x\,\partial y}+i(x-1)\frac{\partial\Psi}{\partial x}+\frac{i}{2}\Psi=\lambda\Psi, $$ where $s={1}/{2}+i\lambda$. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space $L_2(\Pi)$, where $\Pi=(0,1)\times(0,2\pi)$. We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of $\Psi(x,y,s)$. We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function. Bibliography: 15 titles.
Keywords: Lerch's transcendent, Hilbert space, symmetric operator, eigenfunction.
@article{SM_2014_205_8_a1,
     author = {V. M. Kaplitskii},
     title = {A differential equation for {Lerch's} transcendent and associated symmetric operators in {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {1080--1106},
     publisher = {mathdoc},
     volume = {205},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1080
EP  - 1106
VL  - 205
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/
LA  - en
ID  - SM_2014_205_8_a1
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
%J Sbornik. Mathematics
%D 2014
%P 1080-1106
%V 205
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/
%G en
%F SM_2014_205_8_a1
V. M. Kaplitskii. A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1080-1106. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a1/