Mots-clés : conjugacy classes
@article{SM_2014_205_8_a0,
author = {R. Ya. Budylin},
title = {Conjugacy classes in discrete {Heisenberg} groups},
journal = {Sbornik. Mathematics},
pages = {1069--1079},
year = {2014},
volume = {205},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_8_a0/}
}
R. Ya. Budylin. Conjugacy classes in discrete Heisenberg groups. Sbornik. Mathematics, Tome 205 (2014) no. 8, pp. 1069-1079. http://geodesic.mathdoc.fr/item/SM_2014_205_8_a0/
[1] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), v. 1, Hindustan Book Agency, New Delhi, 2011, 362–392 | DOI | MR | Zbl
[2] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Part 1, Amer. Math. Soc., Providence, RI, 1989, 171–190 | DOI | MR | Zbl
[3] A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups”, Funct. Anal. Appl., 44:2 (2010), 156–159 | DOI | DOI | MR | Zbl
[4] S. A. Arnal', A. N. Parshin, “On irreducible representations of discrete Heisenberg groups”, Math. Notes, 92:3 (2012), 295–301 | DOI | DOI | Zbl