Criteria for equality in two entropic inequalities
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1045-1068

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a simple criterion for local equality between the constrained Holevo capacity and the quantum mutual information of a quantum channel. This shows that the set of all states for which this equality holds is determined by the kernel of the channel (as a linear map). Applications to Bosonic Gaussian channels are considered. It is shown that for a Gaussian channel having no completely depolarizing components the above characteristics may coincide only at non-Gaussian mixed states and a criterion for the existence of such states is given. All the obtained results may be reformulated as conditions for equality between the constrained Holevo capacity of a quantum channel and the input von Neumann entropy. Bibliography: 20 titles.
Keywords: quantum state, quantum channel, von Neumann entropy, quantum mutual information, Holevo capacity of a quantum channel.
@article{SM_2014_205_7_a6,
     author = {M. E. Shirokov},
     title = {Criteria for equality in two entropic inequalities},
     journal = {Sbornik. Mathematics},
     pages = {1045--1068},
     publisher = {mathdoc},
     volume = {205},
     number = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Criteria for equality in two entropic inequalities
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1045
EP  - 1068
VL  - 205
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/
LA  - en
ID  - SM_2014_205_7_a6
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Criteria for equality in two entropic inequalities
%J Sbornik. Mathematics
%D 2014
%P 1045-1068
%V 205
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/
%G en
%F SM_2014_205_7_a6
M. E. Shirokov. Criteria for equality in two entropic inequalities. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1045-1068. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/