@article{SM_2014_205_7_a6,
author = {M. E. Shirokov},
title = {Criteria for equality in two entropic inequalities},
journal = {Sbornik. Mathematics},
pages = {1045--1068},
year = {2014},
volume = {205},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/}
}
M. E. Shirokov. Criteria for equality in two entropic inequalities. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1045-1068. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/
[1] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | MR | Zbl
[2] M. Junge, C. Palazuelos, Channel capacities via $p$-summing norms, arXiv: 1305.1020
[3] C. Adami, N. J. Cerf, “Von Neumann capacity of noisy quantum channels”, Phys. Rev. A, 56:5 (1997), 3470–3483 | DOI
[4] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl
[5] M. E. Shirokov, “Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel”, Problems Inform. Transmission, 48:2 (2012), 85–101 | DOI | Zbl
[6] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. I, II, Frederick Ungar Publishing Co., New York, 1961, 1963, xi+147 pp., v+218 pp. | MR | MR | MR | Zbl | Zbl
[7] A. S. Holevo, “Some estimates of information transmitted through quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl
[8] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl
[9] M. E. Shirokov, “Reversibility conditions for quantum channels and their applications”, Sb. Math., 204:8 (2013), 1215–1237 | DOI | DOI | MR | Zbl
[10] A. S. Holevo, M. E. Shirokov, “On classical capacities of infinite-dimensional quantum channels”, Problems Inform. Transmission, 49:1 (2013), 15–31 | DOI | Zbl
[11] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl
[12] T. S. Cubitt, M. B. Ruskai, G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp. | DOI | MR | Zbl
[13] A. Jenčová, D. Petz, “Sufficiency in quantum statistical inference”, Comm. Math. Phys., 263:1 (2006), 259–276 | DOI | MR | Zbl
[14] A. Jenčová, “Reversibility conditions for quantum operations”, Rev. Math. Phys., 24:7 (2012), 1250016, 26 pp. | DOI | MR | Zbl
[15] B. Schumacher, M. D. Westmoreland, “Optimal signal ensembles”, Phys. Rev. A, 63:2 (2001), 022308 | DOI
[16] J. Eisert, M. M. Wolf, “Gaussian quantum channels”, Quantum information with continuous variables of atoms and light, Imp. Coll. Press, London, 2007, 23–42 | DOI | MR | Zbl
[17] F. Caruso, J. Eisert, V. Giovannetti, A. S. Holevo, “Multi-mode bosonic Gaussian channels”, New J. Phys., 10 (2008), 083030 | DOI
[18] A. S. Holevo, On extreme Bosonic linear channels, arXiv: 1111.3552
[19] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | MR | MR | Zbl | Zbl
[20] A. I. Kostrikin, Yu. I. Manin, Linear algebra and geometry, Algebra, Logic and Applications, 1, Gordon and Breach Science Publishers, New York, 1989, x+309 pp. | MR | MR | Zbl | Zbl