Criteria for equality in two entropic inequalities
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1045-1068 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a simple criterion for local equality between the constrained Holevo capacity and the quantum mutual information of a quantum channel. This shows that the set of all states for which this equality holds is determined by the kernel of the channel (as a linear map). Applications to Bosonic Gaussian channels are considered. It is shown that for a Gaussian channel having no completely depolarizing components the above characteristics may coincide only at non-Gaussian mixed states and a criterion for the existence of such states is given. All the obtained results may be reformulated as conditions for equality between the constrained Holevo capacity of a quantum channel and the input von Neumann entropy. Bibliography: 20 titles.
Keywords: quantum state, quantum channel, von Neumann entropy, quantum mutual information, Holevo capacity of a quantum channel.
@article{SM_2014_205_7_a6,
     author = {M. E. Shirokov},
     title = {Criteria for equality in two entropic inequalities},
     journal = {Sbornik. Mathematics},
     pages = {1045--1068},
     year = {2014},
     volume = {205},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Criteria for equality in two entropic inequalities
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1045
EP  - 1068
VL  - 205
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/
LA  - en
ID  - SM_2014_205_7_a6
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Criteria for equality in two entropic inequalities
%J Sbornik. Mathematics
%D 2014
%P 1045-1068
%V 205
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/
%G en
%F SM_2014_205_7_a6
M. E. Shirokov. Criteria for equality in two entropic inequalities. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1045-1068. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a6/

[1] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | MR | Zbl

[2] M. Junge, C. Palazuelos, Channel capacities via $p$-summing norms, arXiv: 1305.1020

[3] C. Adami, N. J. Cerf, “Von Neumann capacity of noisy quantum channels”, Phys. Rev. A, 56:5 (1997), 3470–3483 | DOI

[4] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl

[5] M. E. Shirokov, “Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel”, Problems Inform. Transmission, 48:2 (2012), 85–101 | DOI | Zbl

[6] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. I, II, Frederick Ungar Publishing Co., New York, 1961, 1963, xi+147 pp., v+218 pp. | MR | MR | MR | Zbl | Zbl

[7] A. S. Holevo, “Some estimates of information transmitted through quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl

[8] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl

[9] M. E. Shirokov, “Reversibility conditions for quantum channels and their applications”, Sb. Math., 204:8 (2013), 1215–1237 | DOI | DOI | MR | Zbl

[10] A. S. Holevo, M. E. Shirokov, “On classical capacities of infinite-dimensional quantum channels”, Problems Inform. Transmission, 49:1 (2013), 15–31 | DOI | Zbl

[11] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl

[12] T. S. Cubitt, M. B. Ruskai, G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp. | DOI | MR | Zbl

[13] A. Jenčová, D. Petz, “Sufficiency in quantum statistical inference”, Comm. Math. Phys., 263:1 (2006), 259–276 | DOI | MR | Zbl

[14] A. Jenčová, “Reversibility conditions for quantum operations”, Rev. Math. Phys., 24:7 (2012), 1250016, 26 pp. | DOI | MR | Zbl

[15] B. Schumacher, M. D. Westmoreland, “Optimal signal ensembles”, Phys. Rev. A, 63:2 (2001), 022308 | DOI

[16] J. Eisert, M. M. Wolf, “Gaussian quantum channels”, Quantum information with continuous variables of atoms and light, Imp. Coll. Press, London, 2007, 23–42 | DOI | MR | Zbl

[17] F. Caruso, J. Eisert, V. Giovannetti, A. S. Holevo, “Multi-mode bosonic Gaussian channels”, New J. Phys., 10 (2008), 083030 | DOI

[18] A. S. Holevo, On extreme Bosonic linear channels, arXiv: 1111.3552

[19] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | MR | MR | Zbl | Zbl

[20] A. I. Kostrikin, Yu. I. Manin, Linear algebra and geometry, Algebra, Logic and Applications, 1, Gordon and Breach Science Publishers, New York, 1989, x+309 pp. | MR | MR | Zbl | Zbl