The phase topology of a special case of Goryachev integrability in rigid body dynamics
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1024-1044 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The phase topology of a special case of Goryachev integrability in the problem of motion of a rigid body in a fluid is investigated using the method of Boolean functions, which was developed by Kharlamov for algebraically separated systems. The bifurcation diagram of the moment map is found and the Fomenko invariant, which classifies the systems up to rough Liouville equivalence, is specified. Bibliography: 15 titles.
Keywords: Kirchhoff's equations, completely integrable Hamiltonian systems, algebraic separation of variables, bifurcation diagram
Mots-clés : bifurcations of Liouville tori.
@article{SM_2014_205_7_a5,
     author = {P. E. Ryabov},
     title = {The phase topology of a~special case of {Goryachev} integrability in rigid body dynamics},
     journal = {Sbornik. Mathematics},
     pages = {1024--1044},
     year = {2014},
     volume = {205},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/}
}
TY  - JOUR
AU  - P. E. Ryabov
TI  - The phase topology of a special case of Goryachev integrability in rigid body dynamics
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1024
EP  - 1044
VL  - 205
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/
LA  - en
ID  - SM_2014_205_7_a5
ER  - 
%0 Journal Article
%A P. E. Ryabov
%T The phase topology of a special case of Goryachev integrability in rigid body dynamics
%J Sbornik. Mathematics
%D 2014
%P 1024-1044
%V 205
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/
%G en
%F SM_2014_205_7_a5
P. E. Ryabov. The phase topology of a special case of Goryachev integrability in rigid body dynamics. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1024-1044. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/

[1] D. N. Goryachev, “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Izv. Varshavskogo un-ta, 1916, no. 3, 1–13

[2] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Trudy otd-ya fiz. nauk obschestva lyubitelei estestvoznaniya, 11:2 (1903), 7–10

[3] H. M. Yehia, “New integrable problems in the dynamics of rigid bodies with the Kovalevskaya configuration. I. The case of axisymmetric forces”, Mech. Res. Commun., 23:5 (1996), 423–427 | DOI | MR | Zbl

[4] A. V. Tsiganov, “On the generalized Chaplygin system”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 21, Zap. nauchn. sem. POMI, 374, POMI, SPb., 2010, 250–267 | MR

[5] M. P. Kharlamov, “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinam., 2:4 (2006), 453–472

[6] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 12:3 (2007), 267–280 | DOI | MR | Zbl

[7] M. P. Kharlamov, A. Y. Savushkin, “Explicit integration of one problem of motion of the generalized Kowalevski top”, Mech. Res. Comm., 32:5 (2005), 547–552 | DOI | MR | Zbl

[8] P. E. Ryabov, “Explicit integration and topology of D. N. Goryachev case”, Dokl. Math., 84:1 (2011), 502–505 | DOI | MR | Zbl

[9] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii. I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805

[10] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl

[11] A. T. Fomenko, “A Morse theory for integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[12] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[13] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl

[14] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl

[15] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl