Mots-clés : bifurcations of Liouville tori.
@article{SM_2014_205_7_a5,
author = {P. E. Ryabov},
title = {The phase topology of a~special case of {Goryachev} integrability in rigid body dynamics},
journal = {Sbornik. Mathematics},
pages = {1024--1044},
year = {2014},
volume = {205},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/}
}
P. E. Ryabov. The phase topology of a special case of Goryachev integrability in rigid body dynamics. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1024-1044. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a5/
[1] D. N. Goryachev, “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Izv. Varshavskogo un-ta, 1916, no. 3, 1–13
[2] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Trudy otd-ya fiz. nauk obschestva lyubitelei estestvoznaniya, 11:2 (1903), 7–10
[3] H. M. Yehia, “New integrable problems in the dynamics of rigid bodies with the Kovalevskaya configuration. I. The case of axisymmetric forces”, Mech. Res. Commun., 23:5 (1996), 423–427 | DOI | MR | Zbl
[4] A. V. Tsiganov, “On the generalized Chaplygin system”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 21, Zap. nauchn. sem. POMI, 374, POMI, SPb., 2010, 250–267 | MR
[5] M. P. Kharlamov, “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinam., 2:4 (2006), 453–472
[6] M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regul. Chaotic Dyn., 12:3 (2007), 267–280 | DOI | MR | Zbl
[7] M. P. Kharlamov, A. Y. Savushkin, “Explicit integration of one problem of motion of the generalized Kowalevski top”, Mech. Res. Comm., 32:5 (2005), 547–552 | DOI | MR | Zbl
[8] P. E. Ryabov, “Explicit integration and topology of D. N. Goryachev case”, Dokl. Math., 84:1 (2011), 502–505 | DOI | MR | Zbl
[9] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii. I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805
[10] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[11] A. T. Fomenko, “A Morse theory for integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[12] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[13] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl
[14] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[15] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl