The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023

Voir la notice de l'article provenant de la source Math-Net.Ru

Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in $L^p$, $2\le p\infty$. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents $p$ `beyond the index $p=\infty$', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles.
Keywords: $\mathrm{BMO}$ space, Calderón-Zygmund operators, Hölder spaces, Lipschitz space.
Mots-clés : Fourier multipliers
@article{SM_2014_205_7_a4,
     author = {N. N. Osipov},
     title = {The {Littlewood-Paley-Rubio} de {Francia} inequality in {Morrey-Campanato} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1004--1023},
     publisher = {mathdoc},
     volume = {205},
     number = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1004
EP  - 1023
VL  - 205
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/
LA  - en
ID  - SM_2014_205_7_a4
ER  - 
%0 Journal Article
%A N. N. Osipov
%T The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
%J Sbornik. Mathematics
%D 2014
%P 1004-1023
%V 205
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/
%G en
%F SM_2014_205_7_a4
N. N. Osipov. The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/