The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023
Voir la notice de l'article provenant de la source Math-Net.Ru
Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in $L^p$, $2\le p\infty$. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents $p$ `beyond the index $p=\infty$', that is, for spaces of Hölder functions and BMO.
Bibliography: 14 titles.
Keywords:
$\mathrm{BMO}$ space, Calderón-Zygmund operators, Hölder spaces, Lipschitz space.
Mots-clés : Fourier multipliers
Mots-clés : Fourier multipliers
@article{SM_2014_205_7_a4,
author = {N. N. Osipov},
title = {The {Littlewood-Paley-Rubio} de {Francia} inequality in {Morrey-Campanato} spaces},
journal = {Sbornik. Mathematics},
pages = {1004--1023},
publisher = {mathdoc},
volume = {205},
number = {7},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/}
}
N. N. Osipov. The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/