The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in $L^p$, $2\le p<\infty$. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents $p$ `beyond the index $p=\infty$', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles.
Keywords: $\mathrm{BMO}$ space, Calderón-Zygmund operators, Lipschitz space.
Mots-clés : Fourier multipliers, Hölder spaces
@article{SM_2014_205_7_a4,
     author = {N. N. Osipov},
     title = {The {Littlewood-Paley-Rubio} de {Francia} inequality in {Morrey-Campanato} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1004--1023},
     year = {2014},
     volume = {205},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1004
EP  - 1023
VL  - 205
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/
LA  - en
ID  - SM_2014_205_7_a4
ER  - 
%0 Journal Article
%A N. N. Osipov
%T The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
%J Sbornik. Mathematics
%D 2014
%P 1004-1023
%V 205
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/
%G en
%F SM_2014_205_7_a4
N. N. Osipov. The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 1004-1023. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a4/

[1] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 | DOI | MR | Zbl

[2] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg. Sér. B, 37:1 (1985), 20–26 | MR | Zbl

[3] S. V. Kislyakov, D. V. Parilov, “On the Littlewood–Paley theorem for arbitrary intervals”, J. Math. Sci. (N. Y.), 139:2 (2006), 6417–6424 | DOI | MR | Zbl

[4] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR

[5] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl

[6] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H^p$ spaces with $0

1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl

[7] S. V. Kislyakov, “Littlewood–Paley theorem for arbitrary intervals: weighted estimates”, J. Math. Sci. (N. Y.), 156:5 (2009), 824–833 | DOI | MR | Zbl

[8] J.-L. Journé, “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoamericana, 1:3 (1985), 55–91 | DOI | MR | Zbl

[9] N. N. Osipov, “Littlewood–Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0

\le2$”, St. Petersburg Math. J., 22:2 (2011), 293–306 | DOI | MR | Zbl

[10] N. N. Osipov, “One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0

\le2$”, J. Math. Sci. (N. Y.), 172:2 (2011), 229–242 | DOI | MR | Zbl

[11] S. Campanato, “Proprietà di Hölderianità di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 175–188 | MR | Zbl

[12] N. G. Meyers, “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15:5 (1964), 717–721 | DOI | MR | Zbl

[13] S. Kislyakov, N. Kruglyak, Extremal problems in interpolation theory, Whitney–Besicovitch coverings, and singular integrals, IMPAN Monogr. Mat. (N. S.), 74, Birkhäuser/Springer Basel AG, Basel, 2013, x+316 pp. | DOI | MR | Zbl

[14] R. A. DeVore, R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984, viii+115 pp. | DOI | MR | Zbl