Umov-Mandelshtam radiation conditions in elastic periodic waveguides
Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 953-982

Voir la notice de l'article provenant de la source Math-Net.Ru

We study settings of the problem of elasticity theory on wave propagation in an elastic periodic waveguide with radiation conditions at infinity. We present a mathematical theory for energy radiation conditions based on Mandelshtam's energy principle and the Umov-Poynting vector, as well as using the technique of weighted spaces with detached asymptotics and the energy transfer symplectic form. We establish that in a threshold situation, that is, when standing and polynomial elastic Floquet waves appear, the well-known limiting absorption principle, in contrast to the energy principle that is being applied, cannot identify the direction of the wave's motion. Bibliography: 37 titles.
Keywords: elastic periodic waveguide, Mandelshtam's energy radiation condition, Umov-Poynting vector, energy transfer symplectic form.
@article{SM_2014_205_7_a2,
     author = {S. A. Nazarov},
     title = {Umov-Mandelshtam radiation conditions in elastic periodic waveguides},
     journal = {Sbornik. Mathematics},
     pages = {953--982},
     publisher = {mathdoc},
     volume = {205},
     number = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_7_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Umov-Mandelshtam radiation conditions in elastic periodic waveguides
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 953
EP  - 982
VL  - 205
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_7_a2/
LA  - en
ID  - SM_2014_205_7_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Umov-Mandelshtam radiation conditions in elastic periodic waveguides
%J Sbornik. Mathematics
%D 2014
%P 953-982
%V 205
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_7_a2/
%G en
%F SM_2014_205_7_a2
S. A. Nazarov. Umov-Mandelshtam radiation conditions in elastic periodic waveguides. Sbornik. Mathematics, Tome 205 (2014) no. 7, pp. 953-982. http://geodesic.mathdoc.fr/item/SM_2014_205_7_a2/