The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 892-911 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the $\mathscr H$-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the $\mathscr H$-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24 titles.
Keywords: bounded and almost periodic solution, nonlinear almost periodic differential equations, Amerio's theorem.
@article{SM_2014_205_6_a5,
     author = {V. E. Slyusarchuk},
     title = {The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations},
     journal = {Sbornik. Mathematics},
     pages = {892--911},
     year = {2014},
     volume = {205},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a5/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 892
EP  - 911
VL  - 205
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a5/
LA  - en
ID  - SM_2014_205_6_a5
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations
%J Sbornik. Mathematics
%D 2014
%P 892-911
%V 205
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a5/
%G en
%F SM_2014_205_6_a5
V. E. Slyusarchuk. The study of nonlinear almost periodic differential equations without recourse to the $\mathscr H$-classes of these equations. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 892-911. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a5/

[1] J. Favard, “Sur les équations différentielles linéaires à coefficients presque-périodiques”, Acta Math., 51:1 (1928), 31–81 | DOI | MR | Zbl

[2] L. Amerio, “Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl. (4), 39:1 (1955), 97–119 | DOI | MR | Zbl

[3] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[4] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl

[5] S. Bochner, “Beitrage zur Theorie der fastperiodischen Funktionen. I Teil. Funktionen einer Variablen”, Math. Ann., 96:1 (1927), 119–147 | DOI | MR | Zbl

[6] E. Mukhamadiev, “Ob obratimosti funktsionalnykh operatorov v prostranstve ogranichennykh na osi funktsii”, Matem. zametki, 11:3 (1972), 269–274 | MR | Zbl

[7] E. Mukhamadiev, “Issledovaniya po teorii periodicheskikh i ogranichennykh reshenii differentsialnykh uravnenii”, Matem. zametki, 30:3 (1981), 443–460 | MR | Zbl

[8] V. E. Slyusarchuk, “Obratimost pochti periodicheskikh $c$-nepreryvnykh funktsionalnykh operatorov”, Matem. sb., 116(158):4(12) (1981), 483–501 ; V. E. Slyusarchuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | MR | Zbl | DOI

[9] V. E. Slyusarchuk, “Obratimost neavtonomnykh differentsialno-funktsionalnykh operatorov”, Matem. sb., 130(172):1(5) (1986), 86–104 ; V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | MR | Zbl | DOI

[10] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya obratimosti neavtonomnykh funktsionalno-differentsialnykh operatorov”, Matem. zametki, 42:2 (1987), 262–267 | MR | Zbl

[11] E. Mukhamadiev, “Ob obratimosti differentsialnykh operatorov v chastnykh proizvodnykh ellipticheskogo tipa”, Dokl. AN SSSR, 205 (1972), 1292–1295 | MR | Zbl

[12] M. A. Shubin, “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, UMN, 33:2(200) (1978), 3–47 | MR | Zbl

[13] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978, 204 pp. ; B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, 211 pp. | MR | Zbl | MR | Zbl

[14] L. Amerio, “Sull equazioni differenziali quasi-periodiche astratte”, Ricerche Mat., 9 (1960), 255–274 | MR | Zbl

[15] V. V. Zhikov, “Ob odnom dopolnenii k klassicheskoi teorii Favara”, Matem. zametki, 7:2 (1970), 239–246 | MR | Zbl

[16] V. V. Zhikov, “Suschestvovanie pochti periodicheskikh po Levitanu reshenii lineinykh sistem (vtoroe dopolnenie k klassicheskoi teorii Favara)”, Matem. zametki, 9:4 (1971), 409–414 | MR | Zbl

[17] V. V. Zhikov, “Dokazatelstvo teoremy Favara o suschestvovanii pochti periodicheskogo resheniya v sluchae proizvolnogo banakhova prostranstva”, Matem. zametki, 23:1 (1978), 121–126 | MR | Zbl

[18] A. M. Fink, “Semi-separated conditions for almost periodic solutions”, J. Differential Equations, 11:2 (1972), 245–251 | DOI | MR | Zbl

[19] V. E. Slyusarchuk, “Ogranichennye i periodicheskie resheniya nelineinykh differentsialno-funktsionalnykh uravnenii”, Matem. sb., 203:5 (2012), 135–160 | DOI | MR | Zbl

[20] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 2-e izd., Nauka, M., 1968, 496 pp. ; A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, 129, 128 pp. | MR | Zbl | MR | MR | Zbl

[21] V. Yu. Slyusarchuk, “Umovi maizhe periodichnosti obmezhenikh rozv'yazkiv neliniinikh riznitsevikh rivnyan z neperervnim argumentom”, Neliniini kolivannya, 16:1 (2013), 118–124 | MR

[22] V. Yu. Slyusarchuk, “Umovi isnuvannya maizhe periodichnikh rozv'yazkiv neliniinikh riznitsevikh rivnyan z diskretnim argumentom”, Neliniini kolivannya, 16:3 (2013), 416–425 | MR

[23] V. Yu. Slyusarchuk, “Metod lokalnoï liniinoï aproksimatsiï v teoriï obmezhenikh rozv'yazkiv neliniinikh diferentsialnikh rivnyan”, Ukr. matem. zhurn., 61:11 (2009), 1541–1556 | MR | Zbl

[24] V. E. Slyusarchuk, “Metod lokalnoi lineinoi approksimatsii v teorii nelineinykh differentsialno-funktsionalnykh uravnenii”, Matem. sb., 201:8 (2010), 103–126 | DOI | MR | Zbl