On algebraic properties of topological full groups
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 843-861 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the algebraic structure of the topological full group $[[T]]$ of a Cantor minimal system $(X,T)$. We show that $[[T]]$ has a structure similar to a union of permutational wreath products of the group $\mathbb Z$. This allows us to prove that the topological full groups are locally embeddable into finite groups, give an elementary proof of the fact that the group $[[T]]'$ is infinitely presented, and provide explicit examples of maximal locally finite subgroups of $[[T]]$. We also show that the commutator subgroup $[[T]]'$, which is simple and finitely-generated for minimal subshifts, is decomposable into a product of two locally finite groups, and that $[[T]]$ and $[[T]]'$ possess continuous ergodic invariant random subgroups. Bibliography: 36 titles.
Keywords: full group, Cantor system, finitely generated group
Mots-clés : simple group, amenable group.
@article{SM_2014_205_6_a3,
     author = {R. Grigorchuk and K. Medynets},
     title = {On algebraic properties of topological full groups},
     journal = {Sbornik. Mathematics},
     pages = {843--861},
     year = {2014},
     volume = {205},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a3/}
}
TY  - JOUR
AU  - R. Grigorchuk
AU  - K. Medynets
TI  - On algebraic properties of topological full groups
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 843
EP  - 861
VL  - 205
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a3/
LA  - en
ID  - SM_2014_205_6_a3
ER  - 
%0 Journal Article
%A R. Grigorchuk
%A K. Medynets
%T On algebraic properties of topological full groups
%J Sbornik. Mathematics
%D 2014
%P 843-861
%V 205
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a3/
%G en
%F SM_2014_205_6_a3
R. Grigorchuk; K. Medynets. On algebraic properties of topological full groups. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 843-861. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a3/

[1] S. Thomas, Topological full groups of minimal subshifts and just-infinite groups, 2012

[2] H. A. Dye, “On groups of measure preserving transformations. II”, Amer. J. Math., 85:4 (1963), 551–576 | DOI | MR | Zbl

[3] M. Rubin, “On the reconstruction of topological spaces from their groups of homeomorphisms”, Trans. Amer. Math. Soc., 312:2 (1989), 487–538 | DOI | MR | Zbl

[4] E. Glasner, B. Weiss, “Weak orbit equivalence of Cantor minimal systems”, Internat. J. Math., 6:4 (1995), 559–579 | DOI | MR | Zbl

[5] T. Giordano, I. F. Putnam, C. F. Skau, “Full groups of Cantor minimal systems”, Israel J. Math., 111:1 (1999), 285–320 | DOI | MR | Zbl

[6] S. Bezuglyi, J. Kwiatkowski, “The topological full group of a Cantor minimal system is dense in the full group”, Topol. Methods Nonlinear Anal., 16:2 (2000), 371–397 | MR | Zbl

[7] S. Bezuglyi, K. Medynets, “Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems”, Colloq. Math., 110:2 (2008), 409–429 | DOI | MR | Zbl

[8] K. Medynets, “Reconstruction of orbits of Cantor systems from full groups”, Bull. Lond. Math. Soc., 43:6 (2011), 1104–1110 | DOI | MR | Zbl

[9] H. Matui, “Topological orbit equivalence of locally compact Cantor minimal systems”, Ergodic Theory Dynam. Systems, 22:6 (2002), 1871–1903 | DOI | MR | Zbl

[10] B. D. Miller, C. Rosendal, “Isomorphism of Borel full groups”, Proc. Amer. Math. Soc., 135:2 (2007), 517–522 | DOI | MR | Zbl

[11] V. Zhuravlev, Two theorems of Dye in the almost continuous category, Thesis (Ph.D.), University of Toronto, Canada, 2009, 89 pp. | MR

[12] T. Ibarlucia, J. Melleray, Full groups of minimal homeomorphisms and Baire category methods, arXiv: 1309.3114

[13] H. Matui, “Some remarks on topological full groups of Cantor minimal systems”, Internat. J. Math., 17:2 (2006), 231–251 | DOI | MR | Zbl

[14] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[15] P. Walters, An introduction to ergodic theory, Grad. Texts in Math., 79, Springer-Verlag, New York–Berlin, 1982, ix+250 pp. | MR | Zbl

[16] F. Hahn, Y. Katznelson, “On the entropy of uniquely ergodic transformations”, Trans. Amer. Math. Soc., 126:2 (1967), 335–360 | DOI | MR | Zbl

[17] C. Grillenberger, “Constructions of strictly ergodic systems. I. Given entropy”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 323–334 | DOI | MR | Zbl

[18] K. Juschenko, N. Monod, “Cantor systems, piecewise translations and simple amenable groups”, Ann. of Math. (2), 178:2 (2013), 775–787 ; arXiv: 1204.2132 | DOI | MR | Zbl

[19] G. Elek, N. Monod, “On the topological full group of a minimal Cantor $Z^2$-system”, Proc. Amer. Math. Soc., 141:10 (2013), 3549–3552 ; arXiv: 1201.0257 | DOI | MR | Zbl

[20] R. I. Grigorchuk, “An example of a finitely presented amenable group that does not belong to the class $\mathrm{EG}$”, Sb. Math., 189:1 (1998), 75–95 | DOI | DOI | MR | Zbl

[21] Ching Chou, “Elementary amenable groups”, Illinois J. Math., 24:3 (1980), 396–407 | MR | Zbl

[22] A. M. Vershik, E. I. Gordon, “Groups that are locally embeddable in the class of finite groups”, St. Petersburg Math. J., 9:1 (1998), 49–67 | MR | Zbl

[23] T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, xx+439 pp. | DOI | MR | Zbl

[24] G. Elek, Full groups and soficity, arXiv: 1211.0621

[25] R. Grigorchuk, “Solved and unsolved problems around one group”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 117–218 | DOI | MR | Zbl

[26] V. I. Sushchanskii, “Wreath products and periodic factorable groups”, Math. USSR-Sb., 67:2 (1990), 535–553 | DOI | MR | Zbl

[27] M. Abért, “Group laws and free subgroups in topological groups”, Bull. London Math. Soc., 37:4 (2005), 525–534 | DOI | MR | Zbl

[28] O. Belegradek, “Local embeddability”, Algebra Discrete Math., 14:1 (2012), 14–28 | MR | Zbl

[29] A. M. Slobodskoi, “Unsolvability of the universal theory of finite groups”, Algebra and Logic, 20:2 (1981), 139–156 | DOI | MR | Zbl

[30] F. Durand, “Decidability of uniform recurrence of morphic sequences”, Internat. J. Found. Comput. Sci., 24:1 (2013), 123–146 | DOI | MR | Zbl

[31] A. M. Vershik, “Nonfree actions of countable groups and their characters”, J. Math. Sci. (N. Y.), 174:1 (2011), 1–6 | DOI | MR | Zbl

[32] Ya. Vorobets, “Notes on the Schreier graphs of the Grigorchuk group”, Dynamical systems and group actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 221–248 | DOI | MR | Zbl

[33] R. H. Herman, I. F. Putnam, C. F. Skau, “Ordered Bratteli diagrams, dimension groups and topological dynamics”, Internat. J. Math., 3:6 (1992), 827–864 | DOI | MR | Zbl

[34] T. Giordano, I. F. Putnam, C. F. Skau, “Topological orbit equivalence and {$C^*$-crossed} products”, J. Reine Angew. Math., 469 (1995), 51–111 | MR | Zbl

[35] S. Bezuglyi, A. H. Dooley, K. Medynets, “The Rokhlin lemma for homeomorphisms of a Cantor set”, Proc. Amer. Math. Soc., 133:10 (2005), 2957–2964 | DOI | MR | Zbl

[36] K. Medynets, “On approximation of homeomorphisms of a Cantor set”, Fund. Math., 194:1 (2007), 1–13 | DOI | MR | Zbl