The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some special classes of relaxation systems are introduced, with one slow and one fast variable, in which the evolution of the slow component $x(t)$ in time is described by an ordinary differential equation, while the evolution of the fast component $y(t)$ is described by a Volterra-type differential equation with delay $y(t-h)$, $h=\mathrm{const}>0$,
and with a small parameter $\varepsilon>0$ multiplying the time derivative. Questions relating to the existence and stability of impulse-type periodic solutions, in which the $x$-component converges pointwise  to a discontinuous function as $\varepsilon\to 0$ and the $y$-component is shaped like a $\delta$-function, are investigated. The results obtained are illustrated by several examples from ecology and laser theory.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nonclassical relaxation oscillations, singularly perturbed delay systems, asymptotic behaviour, stability.
                    
                    
                    
                  
                
                
                @article{SM_2014_205_6_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The theory of nonclassical relaxation oscillations in singularly perturbed delay systems},
     journal = {Sbornik. Mathematics},
     pages = {781--842},
     publisher = {mathdoc},
     volume = {205},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/}
}
                      
                      
                    TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - The theory of nonclassical relaxation oscillations in singularly perturbed delay systems JO - Sbornik. Mathematics PY - 2014 SP - 781 EP - 842 VL - 205 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/ LA - en ID - SM_2014_205_6_a2 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T The theory of nonclassical relaxation oscillations in singularly perturbed delay systems %J Sbornik. Mathematics %D 2014 %P 781-842 %V 205 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/ %G en %F SM_2014_205_6_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The theory of nonclassical relaxation oscillations in singularly perturbed delay systems. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
