The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some special classes of relaxation systems are introduced, with one slow and one fast variable, in which the evolution of the slow component $x(t)$ in time is described by an ordinary differential equation, while the evolution of the fast component $y(t)$ is described by a Volterra-type differential equation with delay $y(t-h)$, $h=\mathrm{const}>0$, and with a small parameter $\varepsilon>0$ multiplying the time derivative. Questions relating to the existence and stability of impulse-type periodic solutions, in which the $x$-component converges pointwise to a discontinuous function as $\varepsilon\to 0$ and the $y$-component is shaped like a $\delta$-function, are investigated. The results obtained are illustrated by several examples from ecology and laser theory. Bibliography: 11 titles.
Keywords: nonclassical relaxation oscillations, singularly perturbed delay systems, asymptotic behaviour, stability.
@article{SM_2014_205_6_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The theory of nonclassical relaxation oscillations in singularly perturbed delay systems},
     journal = {Sbornik. Mathematics},
     pages = {781--842},
     year = {2014},
     volume = {205},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 781
EP  - 842
VL  - 205
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
LA  - en
ID  - SM_2014_205_6_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
%J Sbornik. Mathematics
%D 2014
%P 781-842
%V 205
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
%G en
%F SM_2014_205_6_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The theory of nonclassical relaxation oscillations in singularly perturbed delay systems. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/

[1] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | MR | MR | Zbl | Zbl

[2] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl

[3] A. Yu. Kolesov, “Specific relaxation cycles of systems of Lotka–Volterra type”, Math. USSR-Izv., 38:3 (1992), 503–523 | DOI | MR | Zbl

[4] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Comput. Math. Math. Phys., 51:8 (2011), 1307–1324 | DOI | MR | Zbl

[5] Ya. I. Khanin, Osnovy dinamiki lazerov, Fizmatlit, M., 1999, 368 pp.

[6] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50, Teleological mechanisms (1948), 221–246 | DOI

[7] K. Gopalsamy, Pei-Xuan Weng, “Feedback regulation of logistic growth”, Internat. J. Math. Math. Sci., 16:1 (1993), 177–192 | DOI | MR | Zbl

[8] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Math. Appl., 74, Kluwer Academic Publishers Group, Dordrecht, 1992, xii+501 pp. | DOI | MR | Zbl

[9] R. M. May, Stability and complexity in model ecosystems, Princeton Univ. Press, Princeton, NJ, 1973, 235 pp.

[10] Yu. S. Kolesov, “Rezonansy v ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 26–42 | MR | Zbl

[11] S. A. Kaschenko, E. V. Grigoreva, Relaksatsionnye kolebaniya v lazerakh, Sinergetika: ot proshlogo k buduschemu, 64, URSS, M., 2013, 266 pp.