The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842

Voir la notice de l'article provenant de la source Math-Net.Ru

Some special classes of relaxation systems are introduced, with one slow and one fast variable, in which the evolution of the slow component $x(t)$ in time is described by an ordinary differential equation, while the evolution of the fast component $y(t)$ is described by a Volterra-type differential equation with delay $y(t-h)$, $h=\mathrm{const}>0$, and with a small parameter $\varepsilon>0$ multiplying the time derivative. Questions relating to the existence and stability of impulse-type periodic solutions, in which the $x$-component converges pointwise to a discontinuous function as $\varepsilon\to 0$ and the $y$-component is shaped like a $\delta$-function, are investigated. The results obtained are illustrated by several examples from ecology and laser theory. Bibliography: 11 titles.
Keywords: nonclassical relaxation oscillations, singularly perturbed delay systems, asymptotic behaviour, stability.
@article{SM_2014_205_6_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The theory of nonclassical relaxation oscillations in singularly perturbed delay systems},
     journal = {Sbornik. Mathematics},
     pages = {781--842},
     publisher = {mathdoc},
     volume = {205},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 781
EP  - 842
VL  - 205
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
LA  - en
ID  - SM_2014_205_6_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The theory of nonclassical relaxation oscillations in singularly perturbed delay systems
%J Sbornik. Mathematics
%D 2014
%P 781-842
%V 205
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
%G en
%F SM_2014_205_6_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The theory of nonclassical relaxation oscillations in singularly perturbed delay systems. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/