@article{SM_2014_205_6_a2,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {The theory of nonclassical relaxation oscillations in singularly perturbed delay systems},
journal = {Sbornik. Mathematics},
pages = {781--842},
year = {2014},
volume = {205},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - The theory of nonclassical relaxation oscillations in singularly perturbed delay systems JO - Sbornik. Mathematics PY - 2014 SP - 781 EP - 842 VL - 205 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/ LA - en ID - SM_2014_205_6_a2 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The theory of nonclassical relaxation oscillations in singularly perturbed delay systems. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 781-842. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a2/
[1] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | MR | MR | Zbl | Zbl
[2] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl
[3] A. Yu. Kolesov, “Specific relaxation cycles of systems of Lotka–Volterra type”, Math. USSR-Izv., 38:3 (1992), 503–523 | DOI | MR | Zbl
[4] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Comput. Math. Math. Phys., 51:8 (2011), 1307–1324 | DOI | MR | Zbl
[5] Ya. I. Khanin, Osnovy dinamiki lazerov, Fizmatlit, M., 1999, 368 pp.
[6] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50, Teleological mechanisms (1948), 221–246 | DOI
[7] K. Gopalsamy, Pei-Xuan Weng, “Feedback regulation of logistic growth”, Internat. J. Math. Math. Sci., 16:1 (1993), 177–192 | DOI | MR | Zbl
[8] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Math. Appl., 74, Kluwer Academic Publishers Group, Dordrecht, 1992, xii+501 pp. | DOI | MR | Zbl
[9] R. M. May, Stability and complexity in model ecosystems, Princeton Univ. Press, Princeton, NJ, 1973, 235 pp.
[10] Yu. S. Kolesov, “Rezonansy v ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 26–42 | MR | Zbl
[11] S. A. Kaschenko, E. V. Grigoreva, Relaksatsionnye kolebaniya v lazerakh, Sinergetika: ot proshlogo k buduschemu, 64, URSS, M., 2013, 266 pp.