Characterizing quasiconvex functions in terms of the Kronrod's tree of a function
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 777-780 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As an application of Kronrod's construction of the tree of a function to convex analysis, a characterization of quasiconvex functions is obtained. Namely, a function is quasiconvex if and only if the associated function defined on the tree of the original function is quasiconvex. A new proof of one of the existence lemmas in Kronrod's construction of the tree of a function (the original proof of which turned out to be incorrect) is given. Bibliography: 4 titles.
Keywords: Kronrod's tree of a function
Mots-clés : quasiconvex functions.
@article{SM_2014_205_6_a1,
     author = {A. I. Vorob'ev},
     title = {Characterizing quasiconvex functions in terms of the {Kronrod's} tree of a~function},
     journal = {Sbornik. Mathematics},
     pages = {777--780},
     year = {2014},
     volume = {205},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a1/}
}
TY  - JOUR
AU  - A. I. Vorob'ev
TI  - Characterizing quasiconvex functions in terms of the Kronrod's tree of a function
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 777
EP  - 780
VL  - 205
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a1/
LA  - en
ID  - SM_2014_205_6_a1
ER  - 
%0 Journal Article
%A A. I. Vorob'ev
%T Characterizing quasiconvex functions in terms of the Kronrod's tree of a function
%J Sbornik. Mathematics
%D 2014
%P 777-780
%V 205
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a1/
%G en
%F SM_2014_205_6_a1
A. I. Vorob'ev. Characterizing quasiconvex functions in terms of the Kronrod's tree of a function. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 777-780. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a1/

[1] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl

[2] L. D. Ivanov, Variatsii mnozhestv i funktsii, Nauka, M., 1975, 352 pp. | MR | Zbl

[3] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii mnogikh peremennykh cherez superpozitsii nepreryvnykh funktsii odnoi peremennoi i slozhenie”, Dokl. AN SSSR, 114 (1957), 953–956 | MR | Zbl

[4] S. S. Kutateladze, A. M. Rubinov, Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976, 254 pp. | MR