On steady motion of viscoelastic fluid of Oldroyd type
Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 763-776

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model describing the steady motion of a viscoelastic medium of Oldroyd type under the Navier slip condition at the boundary. In the rheological relation, we use the objective regularized Jaumann derivative. We prove the solubility of the corresponding boundary-value problem in the weak setting. We obtain an estimate for the norm of a solution in terms of the data of the problem. We show that the solution set is sequentially weakly closed. Furthermore, we give an analytic solution of the boundary-value problem describing the flow of a viscoelastic fluid in a flat channel under a slip condition at the walls. Bibliography: 13 titles.
Keywords: non-Newtonian fluids, viscoelastic media, Oldroyd model, flow in a channel.
Mots-clés : Navier slip condition
@article{SM_2014_205_6_a0,
     author = {E. S. Baranovskii},
     title = {On steady motion of viscoelastic fluid of {Oldroyd} type},
     journal = {Sbornik. Mathematics},
     pages = {763--776},
     publisher = {mathdoc},
     volume = {205},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - On steady motion of viscoelastic fluid of Oldroyd type
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 763
EP  - 776
VL  - 205
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/
LA  - en
ID  - SM_2014_205_6_a0
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T On steady motion of viscoelastic fluid of Oldroyd type
%J Sbornik. Mathematics
%D 2014
%P 763-776
%V 205
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/
%G en
%F SM_2014_205_6_a0
E. S. Baranovskii. On steady motion of viscoelastic fluid of Oldroyd type. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 763-776. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/