Mots-clés : Navier slip condition
@article{SM_2014_205_6_a0,
author = {E. S. Baranovskii},
title = {On steady motion of viscoelastic fluid of {Oldroyd} type},
journal = {Sbornik. Mathematics},
pages = {763--776},
year = {2014},
volume = {205},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/}
}
E. S. Baranovskii. On steady motion of viscoelastic fluid of Oldroyd type. Sbornik. Mathematics, Tome 205 (2014) no. 6, pp. 763-776. http://geodesic.mathdoc.fr/item/SM_2014_205_6_a0/
[1] K. R. Rajagopal, “On some unresolved issues in non-linear fluid dynamics”, Russian Math. Surveys, 58:2 (2003), 319–330 | DOI | DOI | MR | Zbl
[2] C. L. M. H. Navier, “Memoire sur le lois du mouvement des fluides”, Mem. Acad. Roy. Sci. Paris, 6 (1823), 389–416
[3] M. Reiner,, “Rheology”, Handbuch der Physik, herausgegeben von S. Flügge, v. 6, Elastizität und Plastizität, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 434–550 | MR | Zbl
[4] G. Astarita, G. Marucci, Principles of non-Newtonian fluid mechanics, McGraw-Hill, New York, 1974, 296 pp.
[5] D. A. Vorotnikov, “On the existence of weak stationary solutions of a boundary value problem in the Jeffreys model of the motion of a viscoelastic medium”, Russian Math. (Iz. VUZ), 48:9 (2004), 10–14 | MR
[6] E. S. Baranovskii, “An inhomogeneous boundary value problem for the stationary motion equations of Jeffreys viscoelastic medium”, J. Appl. Ind. Math., 7:1 (2013), 22–28 | DOI
[7] V. G. Zvyagin, D. A. Vorotnikov, “Approximating-topological methods in some problems of hydrodynamics”, J. Fixed Point Theory Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl
[8] C. Guillopé, J.-C. Saut, “Existence results for the flow of viscoelastic fluids with a differential constitutive law”, Nonlinear Anal., 15:9 (1990), 849–869 | DOI | MR | Zbl
[9] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford, 1987, xiv+539 pp. | MR | MR | Zbl
[10] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | Zbl | Zbl
[11] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 375 pp. | MR | Zbl
[12] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl
[13] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994, xii+348 pp. | MR | MR | Zbl | Zbl