Multipoint Lax operator algebras: almost-graded structure and central extensions
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 722-762 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- and out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles.
Keywords: infinite-dimensional Lie algebras, current algebras, Krichever-Novikov type algebras, central extensions, Lie algebra cohomology, integrable systems.
@article{SM_2014_205_5_a6,
     author = {M. Schlichenmaier},
     title = {Multipoint {Lax} operator algebras: almost-graded structure and central extensions},
     journal = {Sbornik. Mathematics},
     pages = {722--762},
     year = {2014},
     volume = {205},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a6/}
}
TY  - JOUR
AU  - M. Schlichenmaier
TI  - Multipoint Lax operator algebras: almost-graded structure and central extensions
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 722
EP  - 762
VL  - 205
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a6/
LA  - en
ID  - SM_2014_205_5_a6
ER  - 
%0 Journal Article
%A M. Schlichenmaier
%T Multipoint Lax operator algebras: almost-graded structure and central extensions
%J Sbornik. Mathematics
%D 2014
%P 722-762
%V 205
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a6/
%G en
%F SM_2014_205_5_a6
M. Schlichenmaier. Multipoint Lax operator algebras: almost-graded structure and central extensions. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 722-762. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a6/

[1] I. M. Krichever, O. K. Sheinman, “Lax operator algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294 | DOI | DOI | MR | Zbl

[2] I. M. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[3] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Witham equations”, Mosc. Math. J., 2:4 (2002), 717–752 | MR | Zbl

[4] A. N. Tyurin, “Classification of vector bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 63, Amer. Math. Soc., Providence, RI, 1967, 245–279 | MR | Zbl

[5] O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171 | DOI | DOI | MR | Zbl

[6] O. K. Sheinman, Current algebras on Riemann surfaces. New results and applications, de Gruyter Exp. Math., 58, Walter de Gruyter GmbH Co. KG, Berlin, 2012, xiv+150 pp. | MR | Zbl

[7] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl

[8] O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219 | DOI | MR | Zbl

[9] O. K. Sheinman, “Affine Lie algebras on Riemann surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272 | DOI | MR | Zbl

[10] M. Schlichenmaier, O. K. Sheinman, “The Sugawara construction and Casimir operators for Krichever–Novikov algebras”, J. Math. Sci., 92:2 (1998), 3807–3834 | DOI | MR | Zbl

[11] M. Schlichenmaier, Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin–Toeplitz quantisierung und globale Algebren der konformen Feldtheorie, Habilitation Thesis, Univ. of Mannheim, Mannheim, 1996

[12] M. Schlichenmaier, “Higher genus affine algebras of Krichever–Novikov type”, Mosc. Math. J., 3:4 (2003), 1395–1427 | MR | Zbl

[13] V. G. Kac, “Simple irreducible graded Lie algebras of finite growth”, Math. USSR-Izv., 2:6 (1968), 1271–1311 | DOI | MR | Zbl

[14] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | MR | Zbl | Zbl

[15] R. V. Moody, “Euclidean Lie algebras”, Canad. J. Math., 21 (1969), 1432–1454 | DOI | MR | Zbl

[16] M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766 | DOI | DOI | MR | Zbl

[17] O. K. Sheinman, Lax operator algebras of type $G_2$, 2013, 20 pp., arXiv: 1304.2510v1

[18] O. K. Sheinman, “Affine Krichever–Novikov algebras, their representations and applications”, Geometry, topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316 | MR | Zbl

[19] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 19:2 (1990), 151–165 | DOI | MR | Zbl

[20] M. Schlichenmaier, Verallgemeinerte Krichever–Novikov Algebren und deren Darstellungen, PhD thesis, Univ. Mannheim, Mannheim, 1990, 176 pp. | Zbl

[21] M. Schlichenmaier, “Central extensions and semi-infinite wedge representations of Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 20:1 (1990), 33–46 | DOI | MR | Zbl

[22] M. Schlichenmaier, From the Virasoro algebra to Krichever–Novikov type algebras and beyond, 2013, 31 pp., arXiv: 1301.7725

[23] M. Schlichenmaier, Krichever–Novikov type algebras. Theory and applications, De Gruyter Stud. Math., 53, de Gruyter, Berlin, 2014 (to appear) , x+400 pp. | Zbl

[24] V. A. Sadov, “Bases on multipunctured Riemann surfaces and interacting string amplitudes”, Comm. Math. Phys., 136:3 (1991), 585–597 | DOI | MR | Zbl

[25] M. Schlichenmaier, “Local cocycles and central extensions for multipoint algebras of Krichever–Novikov type”, J. Reine Angew. Math., 559 (2003), 53–94 | MR | Zbl

[26] H. Garland, “The arithmetic theory of loop groups”, Inst. Hautes Études Sci. Publ. Math., 52:1 (1980), 5–136 | DOI | MR | Zbl

[27] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl

[28] I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl

[29] M. Schlichenmaier, An introduction to Riemann surfaces, algebraic curves and moduli spaces, Theoret. Math. Phys., 2nd ed., Springer, Berlin, 2007, xiv+217 pp. | MR | Zbl

[30] P. A. Griffiths, An introduction to the theory of special divisors on algebraic curves, CBMS Regional Conf. Ser. in Math., 44, Amer. Math. Soc., Providence, RI, 1980, v+25 pp. | MR | Zbl