Incoherent systems and coverings in finite dimensional Banach spaces
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 703-721

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the construction of coverings of the unit ball of a finite dimensional Banach space. There is a well-known technique based on comparing volumes which gives upper and lower bounds on covering numbers. However, this technique does not provide a method for constructing good coverings. Here we study incoherent systems and apply them to construct good coverings. We use the following strategy. First, we build a good covering using balls with a radius close to one. Second, we iterate this construction to obtain a good covering for any radius. We shall concentrate mainly on the first step of this strategy. Bibliography: 14 titles.
Keywords: incoherent systems, covering of balls, Banach space, modulus of smoothness
Mots-clés : explicit constructions.
@article{SM_2014_205_5_a5,
     author = {V. N. Temlyakov},
     title = {Incoherent systems and coverings in finite dimensional {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {703--721},
     publisher = {mathdoc},
     volume = {205},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a5/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Incoherent systems and coverings in finite dimensional Banach spaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 703
EP  - 721
VL  - 205
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a5/
LA  - en
ID  - SM_2014_205_5_a5
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Incoherent systems and coverings in finite dimensional Banach spaces
%J Sbornik. Mathematics
%D 2014
%P 703-721
%V 205
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a5/
%G en
%F SM_2014_205_5_a5
V. N. Temlyakov. Incoherent systems and coverings in finite dimensional Banach spaces. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 703-721. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a5/