The continuous spectrum and the effect of parametric resonance. The case of bounded operators
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 684-702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the Mathieu-type differential equation $u''=-A^2 u+\varepsilon B(t)u$ in a Hilbert space $H$. It is assumed that $A$ is a bounded self-adjoint operator which only has an absolutely continuous spectrum and $B(t)$ is almost periodic operator-valued function. Sufficient conditions are obtained under which the Cauchy problem for this equation is stable for small $\varepsilon$ and hence free of parametric resonance. Bibliography: 10 titles.
Keywords: parametric resonance, continuous spectrum, stability.
@article{SM_2014_205_5_a4,
     author = {V. V. Skazka},
     title = {The continuous spectrum and the effect of parametric resonance. {The} case of bounded operators},
     journal = {Sbornik. Mathematics},
     pages = {684--702},
     year = {2014},
     volume = {205},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a4/}
}
TY  - JOUR
AU  - V. V. Skazka
TI  - The continuous spectrum and the effect of parametric resonance. The case of bounded operators
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 684
EP  - 702
VL  - 205
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a4/
LA  - en
ID  - SM_2014_205_5_a4
ER  - 
%0 Journal Article
%A V. V. Skazka
%T The continuous spectrum and the effect of parametric resonance. The case of bounded operators
%J Sbornik. Mathematics
%D 2014
%P 684-702
%V 205
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a4/
%G en
%F SM_2014_205_5_a4
V. V. Skazka. The continuous spectrum and the effect of parametric resonance. The case of bounded operators. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 684-702. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a4/

[1] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete. N.F., 16, Springer-Velag, Berlin–Göttingen–Heidelberg, 1959, vii+271 pp. | DOI | MR | MR | Zbl | Zbl

[2] V. A. Yakubovich, V. M. Starzhinskii, Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987, 328 pp. | MR | Zbl

[3] V. S. Belonosov, V. N. Dorovskii, A. S. Belonosov, S. V. Dorovskii, “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhaniki, 3:2 (2005), 37–70

[4] V. S. Belonosov, “The spectral properties of distributions and asymptotic methods in perturbation theory”, Sb. Math., 203:3 (2012), 307–325 | DOI | DOI | MR | Zbl

[5] V. I. Derguzov, “Ob ustoichivosti reshenii uravnenii Gamiltona s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 63(105):4 (1964), 591–619 | MR | Zbl

[6] V. I. Derguzov, “Dostatochnye usloviya ustoichivosti gamiltonovykh uravnenii s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Matem. sb., 64(106):3 (1964), 419–435 | MR | Zbl

[7] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[8] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl

[9] L. Schwartz, Analyse. Deuxième partie: Topologie générale et analyse fonctionnelle, Collect. Enseign. Sci., 11, Hermann, Paris, 1970, 433 pp. | MR | Zbl | Zbl

[10] R. E. A. C. Paley, N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, viii+184 pp. | MR | Zbl | Zbl