The endotopism semigroups of an equivalence relation
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 646-662 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we investigate six types of endotopism semigroups for a given equivalence relation. Necessary and sufficient conditions for the existence of all such endotopisms are presented. Conditions for the regularity and coregularity of each of the endotopism semigroups of a given type are established. The notion of the endotype of a binary relation with respect to its endotopisms is introduced and the endotype of an arbitrary equivalence relation is calculated. Bibliography: 26 titles.
Keywords: regularity, coregularity, endotype.
Mots-clés : endotopism, equivalence relation
@article{SM_2014_205_5_a2,
     author = {Yu. V. Zhuchok and E. A. Toichkina},
     title = {The endotopism semigroups of an equivalence relation},
     journal = {Sbornik. Mathematics},
     pages = {646--662},
     year = {2014},
     volume = {205},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a2/}
}
TY  - JOUR
AU  - Yu. V. Zhuchok
AU  - E. A. Toichkina
TI  - The endotopism semigroups of an equivalence relation
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 646
EP  - 662
VL  - 205
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a2/
LA  - en
ID  - SM_2014_205_5_a2
ER  - 
%0 Journal Article
%A Yu. V. Zhuchok
%A E. A. Toichkina
%T The endotopism semigroups of an equivalence relation
%J Sbornik. Mathematics
%D 2014
%P 646-662
%V 205
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a2/
%G en
%F SM_2014_205_5_a2
Yu. V. Zhuchok; E. A. Toichkina. The endotopism semigroups of an equivalence relation. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 646-662. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a2/

[1] B. M. Schein, B. Teclezghi, “Endomorphisms of finite full transformation semigroups”, Proc. Amer. Math. Soc., 126:9 (1998), 2579–2587 | DOI | MR | Zbl

[2] V. Mazorchuk, “Endomorphisms of $\mathfrak B_n$, $\mathscr P\mathfrak B_n$ and $\mathfrak C_n$”, Comm. Algebra, 30:7 (2002), 3489–3513 | DOI | MR | Zbl

[3] A. V. Molchanov, “Endomorphism semigroups of weak $p$-hypergraphs”, Russian Math. (Iz. VUZ), 44:3 (2000), 77–80 | MR | Zbl

[4] Yu. V. Zhuchok, “The monoid of endomorphisms of disconnected hypergraphs”, Algebra and Discrete Math., 16:1 (2013), 134–150

[5] L. M. Gluskin, “Polugruppa izotonnykh preobrazovanii”, UMN, 16:5(101) (1961), 157–162 | MR | Zbl

[6] L. B. Shneperman, “Polugruppy endomorfizmov kvaziuporyadochennykh mnozhestv”, Uch. zap. LGPI im. A. I. Gertsena, 238 (1962), 21–37 | Zbl

[7] J. Araújo, J. Konieczny, “Dense relations are determined by their endomorphisms monoids”, Semigroup Forum, 70:2 (2005), 302–306 | DOI | MR | Zbl

[8] B. V. Popov, “Polugruppy endomorfizmov refleksivnykh binarnykh otnoshenii”, Uch. zap. LGPI im. A. I. Gertsena, 302 (1967), 116–123 | MR | Zbl

[9] B. V. Popov, “Polugruppy endomorfizmov $\mu$-arnykh otnoshenii”, Uch. zap. LGPI im. A. I. Gertsena, 274 (1965), 184–201 | MR | Zbl

[10] A. G. Kurosh, Obschaya algebra, lektsii 1969–70 uchebnogo goda, Nauka, M., 1974, 159 pp. | MR

[11] U. Knauer, M. Nieporte, “Endomorphisms of graphs. I. The monoid of strong endomorphisms”, Arch. Math. (Basel), 52:6 (1989), 607–614 | DOI | MR | Zbl

[12] E. A. Bondar, Yu. V. Zhuchok, “Predstavleniya monoida silnykh endomorfizmov konechnykh $n$-odnorodnykh gipergrafov”, Fundament. i prikl. matem., 18:1 (2013), 21–34

[13] E. A. Bondar', Yu. V. Zhuchok, “Semigroups of strong endomorphisms of infinite graphs and hypergraphs”, Ukrainian Math. J., 65:6 (2013), 823–834 | DOI | MR | Zbl

[14] Y. V. Zhuchok, “Endomorfizmi vidnoshen ekvivalentnosti”, Visn. Kiiv. univ. Ser. Fiz.-mat. nauki, 2007, no. 3, 22–26 | Zbl

[15] I. B. Kozhukhov, V. A. Yaroshevich, “Transformation semigroups preserving a binary relation”, J. Math. Sci., 164:2 (2010), 240–244 | DOI | MR

[16] A. Ya. Aĭzenshtat, “Regular semigroups of endomorphisms of ordered sets”, Amer. Math. Soc. Transl. Ser. 2, 139, Amer. Math. Soc., Providence, RI, 1988, 29–35 | MR | Zbl

[17] V. I. Kim, I. B. Kozhukhov, “Regularity conditions for semigroups of isotone transformations of countable chains”, J. Math. Sci., 152:2 (2008), 203–208 | DOI | MR | Zbl

[18] G. Bijev, K. Todorov, “Coregular semigroups”, Notes on semigroups, v. VI, DM 80, 4, Karl Marx Univ. Econom., Budapest, 1980, 1–11 | MR | Zbl

[19] J. Chvalina, K. Matoušková, “Coregularity of endomorphism monoids of unars”, Arch. Math. (Brno), 20:1 (1984), 43–48 | MR | Zbl

[20] I. Dimitrova, J. Koppitz, “Coregular semigroups of full transformations”, Demonstratio Math., 44:4 (2011), 739–753 | MR | Zbl

[21] M. Böttcher, U. Knauer, “Endomorphism spectra of graphs”, Discrete Math., 109:1-3 (1992), 45–57 | DOI | MR | Zbl

[22] A. V. Reshetnikov, “Ob opredeleniyakh gomomorfizma gipergrafov”, Materialy Kh mezhdunar. sem. “Diskretnaya matematika i ee prilozheniya” (Moskva, 1–6 fevr. 2010 g.), MGU, M., 2010, 325–327

[23] Hailong Hou, Xinman Fan, Yanfeng Luo, “Endomorphism types of generalized polygons”, Southeast Asian Bull. Math., 33:3 (2009), 433–441 | MR | Zbl

[24] Hailong Hou, Yanfeng Luo, Zhimi Cheng, “The endomorphism monoid of $\overline{P_n}$”, European J. Combin., 29:5 (2008), 1173–1185 | DOI | MR | Zbl

[25] Weizhong Wang, Hailong Hou, “The endomorphism monoid of $N$-prism”, Int. Math. Forum, 6:49-52 (2011), 2461–2471 | MR | Zbl

[26] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Math. Surveys, I, Amer. Math. Soc., Providence, R.I., 1961, 224 pp. | MR | MR | Zbl | Zbl