On the frames of spaces of finite-dimensional Lie algebras of dimension at most~6
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 633-645

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the frames of spaces of complex $n$-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for $n\le 6$ is given. It is also proved that for $n\le 6$ the projectivizations of these spaces are simply connected. Bibliography: 7 titles.
Keywords: Lie algebra, irreducible component, nilpotent Lie algebra, contraction.
@article{SM_2014_205_5_a1,
     author = {V. V. Gorbatsevich},
     title = {On the frames of spaces of finite-dimensional {Lie} algebras of dimension at most~6},
     journal = {Sbornik. Mathematics},
     pages = {633--645},
     publisher = {mathdoc},
     volume = {205},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the frames of spaces of finite-dimensional Lie algebras of dimension at most~6
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 633
EP  - 645
VL  - 205
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/
LA  - en
ID  - SM_2014_205_5_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the frames of spaces of finite-dimensional Lie algebras of dimension at most~6
%J Sbornik. Mathematics
%D 2014
%P 633-645
%V 205
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/
%G en
%F SM_2014_205_5_a1
V. V. Gorbatsevich. On the frames of spaces of finite-dimensional Lie algebras of dimension at most~6. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 633-645. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/