On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 633-645 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the frames of spaces of complex $n$-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for $n\le 6$ is given. It is also proved that for $n\le 6$ the projectivizations of these spaces are simply connected. Bibliography: 7 titles.
Keywords: Lie algebra, irreducible component, nilpotent Lie algebra, contraction.
@article{SM_2014_205_5_a1,
     author = {V. V. Gorbatsevich},
     title = {On the frames of spaces of finite-dimensional {Lie} algebras of dimension at most~6},
     journal = {Sbornik. Mathematics},
     pages = {633--645},
     year = {2014},
     volume = {205},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 633
EP  - 645
VL  - 205
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/
LA  - en
ID  - SM_2014_205_5_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6
%J Sbornik. Mathematics
%D 2014
%P 633-645
%V 205
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/
%G en
%F SM_2014_205_5_a1
V. V. Gorbatsevich. On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 633-645. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a1/

[1] V. V. Gorbatsevich, “Some properties of the space of $n$-dimensional Lie algebras”, Sb. Math., 200:2 (2009), 185–213 | DOI | DOI | MR | Zbl

[2] V. V. Gorbatsevich, “On the intersection of irreducible components of the space of finite-dimensional Lie algebras”, Sb. Math., 203:7 (2012), 976–995 | DOI | DOI | MR | Zbl

[3] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Friedr. Vieweg Sohn, Braunschweig, 1984, x+308 pp. | MR | MR | Zbl | Zbl

[4] D. Burde, Ch. Steinhoff, “Classification of orbit closures of 4-dimensional complex Lie algebras”, J. Algebra, 214:2 (1999), 729–739 | DOI | MR | Zbl

[5] Yu. Khakimdjanov, “Varieties of Lie algebra laws”, Handbook of algebra, v. 2, North-Holland, Amsterdam, 2000, 509–541 | DOI | MR | Zbl

[6] G. D. Mostow, “Covariant fiberings of Klein spaces, II”, Amer. J. Math., 84:3 (1962), 466–474 | DOI | MR | Zbl

[7] D. Burde, “Degeneration of 7-dimensional nilpotent Lie algebras”, Comm. Algebra, 33:4 (2005), 1259–1277 | DOI | MR | Zbl