A~universal measure for a~pencil of conics and the Great Poncelet Theorem
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 613-632

Voir la notice de l'article provenant de la source Math-Net.Ru

Borel measures on conics which are invariant under the Poncelet map are investigated. For a pencil of conics the existence of a universal measure, which is invariant with respect to each conic in the pencil, is proved. Using this measure a new proof of the Great Poncelet Theorem is given. A full description of invariant Borel measures is also presented. Bibliography: 10 titles.
Keywords: Great Poncelet Theorem, invariant measure, pencil of conics.
@article{SM_2014_205_5_a0,
     author = {E. A. Avksentyev},
     title = {A~universal measure for a~pencil of conics and the {Great} {Poncelet} {Theorem}},
     journal = {Sbornik. Mathematics},
     pages = {613--632},
     publisher = {mathdoc},
     volume = {205},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/}
}
TY  - JOUR
AU  - E. A. Avksentyev
TI  - A~universal measure for a~pencil of conics and the Great Poncelet Theorem
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 613
EP  - 632
VL  - 205
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/
LA  - en
ID  - SM_2014_205_5_a0
ER  - 
%0 Journal Article
%A E. A. Avksentyev
%T A~universal measure for a~pencil of conics and the Great Poncelet Theorem
%J Sbornik. Mathematics
%D 2014
%P 613-632
%V 205
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/
%G en
%F SM_2014_205_5_a0
E. A. Avksentyev. A~universal measure for a~pencil of conics and the Great Poncelet Theorem. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 613-632. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/