@article{SM_2014_205_5_a0,
author = {E. A. Avksentyev},
title = {A~universal measure for a~pencil of conics and the {Great} {Poncelet} {Theorem}},
journal = {Sbornik. Mathematics},
pages = {613--632},
year = {2014},
volume = {205},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/}
}
E. A. Avksentyev. A universal measure for a pencil of conics and the Great Poncelet Theorem. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 613-632. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/
[1] J.-V. Poncelet, Traité des propriétés projectives des figures, Bachelier, Paris, 1822, xlvi+427 pp.
[2] Ph. Griffiths, J. Harris, “On Cayley's explicit solution to Poncelet's porism”, Enseign. Math. (2), 24:1-2 (1978), 31–40 | MR | Zbl
[3] V. Yu. Protasov, “Ob odnom obobschenii teoremy Ponsele”, UMN, 61:6(372) (2006), 187–188 | DOI | MR
[4] V. Yu. Protasov, “Generalized closing theorems”, Elem. Math., 66:3 (2011), 98–117 | DOI | MR | Zbl
[5] M. Berger, Géométrie, v. I–V, CEDIC, Paris; Nathan, Paris, 1977, 192 pp., 214 pp., 184 pp., 218 pp., 189 pp. | MR | MR | MR | MR | MR | MR | MR | Zbl | Zbl
[6] I. J. Schoenberg, “On Jacobi–Bertrand's proof of a Theorem of Poncelet”, Studies in pure mathematics, Birkhäuser Verlag, Basel, 1983, 623–627 | DOI | MR | Zbl
[7] J. L. King, “Three problems in search of a measure”, Amer. Math. Monthly, 101:7 (1994), 609–628 | DOI | MR | Zbl
[8] A. A. Panov, D. A. Panov, “Gomeoidnaya plotnost i teorema Ponsele”, Matem. prosv., ser. 3, 5, MTsNMO, M., 2001, 145–157
[9] H. Lebesgue, Les coniques, Gauthier-Villars, Paris, 1942, viii+190 pp. | Zbl
[10] V. V. Prasolov, V. M. Tikhomirov, Geometriya, 2-e izd., pererab. i dop., MTsNMO, M., 2007, 328 pp.; V. V. Prasolov, V. M. Tikhomirov, Geometry, Transl. Math. Monogr., 200, Amer. Math. Soc., Providence, RI, 2001, xii+257 pp. | MR | Zbl