A universal measure for a pencil of conics and the Great Poncelet Theorem
Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 613-632 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Borel measures on conics which are invariant under the Poncelet map are investigated. For a pencil of conics the existence of a universal measure, which is invariant with respect to each conic in the pencil, is proved. Using this measure a new proof of the Great Poncelet Theorem is given. A full description of invariant Borel measures is also presented. Bibliography: 10 titles.
Keywords: Great Poncelet Theorem, invariant measure, pencil of conics.
@article{SM_2014_205_5_a0,
     author = {E. A. Avksentyev},
     title = {A~universal measure for a~pencil of conics and the {Great} {Poncelet} {Theorem}},
     journal = {Sbornik. Mathematics},
     pages = {613--632},
     year = {2014},
     volume = {205},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/}
}
TY  - JOUR
AU  - E. A. Avksentyev
TI  - A universal measure for a pencil of conics and the Great Poncelet Theorem
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 613
EP  - 632
VL  - 205
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/
LA  - en
ID  - SM_2014_205_5_a0
ER  - 
%0 Journal Article
%A E. A. Avksentyev
%T A universal measure for a pencil of conics and the Great Poncelet Theorem
%J Sbornik. Mathematics
%D 2014
%P 613-632
%V 205
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/
%G en
%F SM_2014_205_5_a0
E. A. Avksentyev. A universal measure for a pencil of conics and the Great Poncelet Theorem. Sbornik. Mathematics, Tome 205 (2014) no. 5, pp. 613-632. http://geodesic.mathdoc.fr/item/SM_2014_205_5_a0/

[1] J.-V. Poncelet, Traité des propriétés projectives des figures, Bachelier, Paris, 1822, xlvi+427 pp.

[2] Ph. Griffiths, J. Harris, “On Cayley's explicit solution to Poncelet's porism”, Enseign. Math. (2), 24:1-2 (1978), 31–40 | MR | Zbl

[3] V. Yu. Protasov, “Ob odnom obobschenii teoremy Ponsele”, UMN, 61:6(372) (2006), 187–188 | DOI | MR

[4] V. Yu. Protasov, “Generalized closing theorems”, Elem. Math., 66:3 (2011), 98–117 | DOI | MR | Zbl

[5] M. Berger, Géométrie, v. I–V, CEDIC, Paris; Nathan, Paris, 1977, 192 pp., 214 pp., 184 pp., 218 pp., 189 pp. | MR | MR | MR | MR | MR | MR | MR | Zbl | Zbl

[6] I. J. Schoenberg, “On Jacobi–Bertrand's proof of a Theorem of Poncelet”, Studies in pure mathematics, Birkhäuser Verlag, Basel, 1983, 623–627 | DOI | MR | Zbl

[7] J. L. King, “Three problems in search of a measure”, Amer. Math. Monthly, 101:7 (1994), 609–628 | DOI | MR | Zbl

[8] A. A. Panov, D. A. Panov, “Gomeoidnaya plotnost i teorema Ponsele”, Matem. prosv., ser. 3, 5, MTsNMO, M., 2001, 145–157

[9] H. Lebesgue, Les coniques, Gauthier-Villars, Paris, 1942, viii+190 pp. | Zbl

[10] V. V. Prasolov, V. M. Tikhomirov, Geometriya, 2-e izd., pererab. i dop., MTsNMO, M., 2007, 328 pp.; V. V. Prasolov, V. M. Tikhomirov, Geometry, Transl. Math. Monogr., 200, Amer. Math. Soc., Providence, RI, 2001, xii+257 pp. | MR | Zbl