The structure of locally bounded finite-dimensional representations of connected locally compact groups
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 600-611 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analogue of a Lie theorem is obtained for (not necessarily continuous) finite-dimensional representations of soluble finite-dimensional locally compact groups with connected quotient group by the centre. As a corollary, the following automatic continuity proposition is obtained for locally bounded finite-dimensional representations of connected locally compact groups: if $G$ is a connected locally compact group, $N$ is a compact normal subgroup of $G$ such that the quotient group $G/N$ is a Lie group, $N_0$ is the connected identity component in $N$, $H$ is the family of elements of $G$ commuting with every element of $N_0$, and $\pi$ is a (not necessarily continuous) locally bounded finite-dimensional representation of $G$, then $\pi$ is continuous on the commutator subgroup of $H$ (in the intrinsic topology of the smallest analytic subgroup of $G$ containing this commutator subgroup). Bibliography: 23 titles.
Keywords: locally compact group, finite-dimensional locally compact group, Lie theorem for soluble groups, Cartan-van der Waerden phenomenon, locally bounded map.
@article{SM_2014_205_4_a6,
     author = {A. I. Shtern},
     title = {The structure of locally bounded finite-dimensional representations of connected locally compact groups},
     journal = {Sbornik. Mathematics},
     pages = {600--611},
     year = {2014},
     volume = {205},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a6/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - The structure of locally bounded finite-dimensional representations of connected locally compact groups
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 600
EP  - 611
VL  - 205
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a6/
LA  - en
ID  - SM_2014_205_4_a6
ER  - 
%0 Journal Article
%A A. I. Shtern
%T The structure of locally bounded finite-dimensional representations of connected locally compact groups
%J Sbornik. Mathematics
%D 2014
%P 600-611
%V 205
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a6/
%G en
%F SM_2014_205_4_a6
A. I. Shtern. The structure of locally bounded finite-dimensional representations of connected locally compact groups. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 600-611. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a6/

[1] E. Cartan, “Sur les représentations linéaires des groupes clos”, Comment. Math. Helv., 2:1 (1930), 269–283 | DOI | MR | Zbl

[2] B. L. van der Waerden, “Stetigkeitssätze für halbeinfache Liesche Gruppen”, Math. Z., 36:1 (1933), 780–786 | DOI | MR | Zbl

[3] O. Schreier, B. L. van der Waerden, “Die Automorphismon der projektiven Gruppen”, Abh. Math. Sem. Univ. Hamburg, 6:1 (1928), 303–322 | DOI | MR | Zbl

[4] H. Freudenthal, “Die Topologie der Lieschen Gruppen als algebraisches Phänomen. I”, Ann. of Math. (2), 42:5 (1941), 1051–1074 | DOI | MR | Zbl

[5] W. T. van Est, “Dense imbeddings of Lie groups”, Nederl. Akad. Wetensch. Proc. Ser. A, 54=Indagationes Math. 13 (1951), 321–328 | MR | Zbl

[6] W. T. van Est, “Dense imbeddings of Lie groups. II (I, II)”, Nederl. Akad. Wetensch. Proc. Ser. A, 55=Indagationes Math. 14 (1952), 255–266, 267–274 | MR | Zbl

[7] M. Goto, “Dense imbedding of topological groups”, Proc. Amer. Math. Soc., 4:4 (1953), 653–655 | DOI | MR | Zbl

[8] M. Goto, “Dense imbeddings of locally compact connected groups”, Ann. of Math. (2), 61:1 (1955), 154–169 | DOI | MR | Zbl

[9] A. Borel, J. Tits, “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. of Math. (2), 97:3 (1973), 499–571 | DOI | MR | Zbl

[10] J. Tits, “Homorphismes “abstraits” de groupes de Lie”, Symposia Mathematica (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), v. XIII, Academic Press, London, 1974, 479–499 | MR | Zbl

[11] D. James, W. Waterhouse, B. Weisfeiler, “Abstract homomorphisms of algebraic groups: problems and bibliography”, Comm. Algebra, 9:1 (1981), 95–114 | DOI | MR | Zbl

[12] Yu Chen, “Homomorphisms from linear groups over division rings to algebraic groups”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer-Verlag, Berlin, 1986, 231–265 | DOI | MR | Zbl

[13] G. M. Seitz, “Abstract homomorphisms of algebraic groups”, J. London Math. Soc. (2), 56:1 (1997), 104–124 | DOI | MR | Zbl

[14] A. I. Shtern, “The structure of homomorphisms of connected locally compact groups into compact groups”, Izv. Math., 75:6 (2011), 1279–1304 | DOI | DOI | MR | Zbl

[15] A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture for homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205 | DOI | DOI | MR | Zbl

[16] A. I. Shtern, “A generalization of Lie's theorem for solvable locally compact groups whose quotient by the center is a Lie group”, Adv. Stud. Contemp. Math. (Kyungshang), 23:4 (2013), 695–700 | MR | Zbl

[17] K. H. Hofmann, S. A. Morris, The structure of compact groups. A primer for the student – a handbook for the expert, de Gruyter Stud. Math., 25, Walter de Gruyter Co., Berlin, 1998, xviii+835 pp. | MR | Zbl

[18] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., 869, Hermann et Cie., Paris, 1940, 158 pp. | MR | Zbl

[19] K. Iwasawa, “On some types of topological groups”, Ann. of Math. (2), 50:3 (1949), 507–558 | DOI | MR | Zbl

[20] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1988, xx+452 pp. | DOI | MR | Zbl

[21] K. H. Hofmann, S. A. Morris, The Lie theory of connected pro-Lie groups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups, EMS Tracts Math., 2, Eur. Math. Soc., Zürich, 2007, xvi+678 pp. | DOI | MR | Zbl

[22] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Structure of topological groups. Integration theory, group representations, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | DOI | MR | MR | Zbl

[23] A. I. Shtern, “Factorization and irreducible representations of a direct product of groups”, Moscow Univ. Math. Bull., 36:6 (1981), 31–32 | MR | Zbl