@article{SM_2014_205_4_a5,
author = {S. S. Kharibegashvili and O. M. Jokhadze},
title = {Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation},
journal = {Sbornik. Mathematics},
pages = {573--599},
year = {2014},
volume = {205},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/}
}
TY - JOUR AU - S. S. Kharibegashvili AU - O. M. Jokhadze TI - Global and blowup solutions of a mixed problem with nonlinear boundary conditions for a one-dimensional semilinear wave equation JO - Sbornik. Mathematics PY - 2014 SP - 573 EP - 599 VL - 205 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/ LA - en ID - SM_2014_205_4_a5 ER -
%0 Journal Article %A S. S. Kharibegashvili %A O. M. Jokhadze %T Global and blowup solutions of a mixed problem with nonlinear boundary conditions for a one-dimensional semilinear wave equation %J Sbornik. Mathematics %D 2014 %P 573-599 %V 205 %N 4 %U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/ %G en %F SM_2014_205_4_a5
S. S. Kharibegashvili; O. M. Jokhadze. Global and blowup solutions of a mixed problem with nonlinear boundary conditions for a one-dimensional semilinear wave equation. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 573-599. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/
[1] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, The Macmillan Co., New York, 1963, xvi+765 pp. | MR | MR | Zbl | Zbl
[2] V. B. Kolmanovskii, V. R. Nosov, Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Teoreticheskie osnovy kibernetiki, Nauka, M., 1981, 448 pp. | MR | Zbl
[3] S. A. Rodrìguez, J.-M. Dion, L. Dugard, “Stability of neutral time delay systems: a survey of some results”, Advances in automatic control, Kluwer Internat. Ser. Engrg. Comput. Sci., 754, Kluwer Acad. Publ., Boston, MA, 2004, 315–335 | DOI | MR | Zbl
[4] A. S. Ackleh, Keng Deng, “Existence and nonexistence of global solutions of the wave equation with a nonlinear boundary condition”, Quart. Appl. Math., 59:1 (2001), 153–158 | MR | Zbl
[5] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source term”, J. Differential Equations, 186:1 (2002), 259–298 | DOI | MR
[6] J. Serrin, G. Todorova, E. Vitillaro, “Existence for a nonlinear wave equation with damping and source terms”, Differential Integral Equations, 16:1 (2003), 13–50 | MR | Zbl
[7] Hongwei Zhang, Qingying Hu, “Asymptotic behaviour and nonexistence of wave equation with nonlinear boundary condition”, Commun. Pure Appl. Anal., 4:4 (2005), 861–896 | DOI | MR | Zbl
[8] A. Nowakowski, “Solvability and stability of a semilinear wave equation with nonlinear boundary conditions”, Nonlinear Anal., 73:6 (2010), 1495–1514 | DOI | MR | Zbl
[9] V. P. Mikhaĭlov, Partial differential equations, Mir, M.; distributed by Imported Publications, Inc., 1978, 397 pp. | MR | MR | Zbl | Zbl
[10] V. S. Vladimirov, Equations of mathematical physics, Pure and Applied Mathematics, 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl | Zbl
[11] R. Narasimhan, Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, Masson Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968, x+246 pp. | MR | Zbl | Zbl
[12] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | MR | MR | Zbl | Zbl
[13] V. A. Trenogin, Funktsionalnyi analiz, 2-e izd., Nauka, M., 1993, 440 pp. | MR | Zbl
[14] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl