Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 573-599
Voir la notice de l'article provenant de la source Math-Net.Ru
A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions.
Bibliography: 14 titles.
Keywords:
semilinear wave equation, nonlinear boundary conditions, a priori estimate, comparison theorems, global and blowup solutions.
@article{SM_2014_205_4_a5,
author = {S. S. Kharibegashvili and O. M. Jokhadze},
title = {Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation},
journal = {Sbornik. Mathematics},
pages = {573--599},
publisher = {mathdoc},
volume = {205},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/}
}
TY - JOUR AU - S. S. Kharibegashvili AU - O. M. Jokhadze TI - Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation JO - Sbornik. Mathematics PY - 2014 SP - 573 EP - 599 VL - 205 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/ LA - en ID - SM_2014_205_4_a5 ER -
%0 Journal Article %A S. S. Kharibegashvili %A O. M. Jokhadze %T Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation %J Sbornik. Mathematics %D 2014 %P 573-599 %V 205 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/ %G en %F SM_2014_205_4_a5
S. S. Kharibegashvili; O. M. Jokhadze. Global and blowup solutions of a~mixed problem with nonlinear boundary conditions for a~one-dimensional semilinear wave equation. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 573-599. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a5/