Mots-clés : Liouville foliation
@article{SM_2014_205_4_a4,
author = {I. K. Kozlov},
title = {The topology of the {Liouville} foliation for the {Kovalevskaya} integrable case on the {Lie} algebra so(4)},
journal = {Sbornik. Mathematics},
pages = {532--572},
year = {2014},
volume = {205},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a4/}
}
I. K. Kozlov. The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4). Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 532-572. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a4/
[1] S. Kowalevski, “Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe”, Acta Math., 14:1 (1890), 81–93 | DOI | MR | Zbl
[2] S. Kowalevski, “Sur le probleme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12:1 (1889), 177–232 | DOI | MR | Zbl
[3] I. V. Komarov, “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324 | DOI | MR
[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl
[5] A. A. Oshemkov, “The topology of surfaces of constant energy and bifurcation diagrams for integrable cases of the dynamics of a rigid body on $\operatorname{SO}(4)$”, Russian Math. Surveys, 42:6 (1987), 241–242 | DOI | MR | Zbl
[6] G. Haghighatdoost, A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 200:6 (2009), 899–921 | DOI | DOI | MR | Zbl
[7] Kh. Khorshidi, “The topology of an integrable Hamiltonian system for the Steklov case on the Lie algebra $\mathrm{so}(4)$”, Moscow Univ. Math. Bull., 61:5 (2006), 40–44 | MR | Zbl
[8] A. S. Mishchenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl
[9] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[10] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988, 200 pp. | MR
[11] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47 (1983):6 (1985), 737–743 | DOI | MR | Zbl
[12] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of a rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[13] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[14] I. K. Kozlov, T. S. Rat'yu, “A bifurcation diagram for the Kovalevskaya case on the Lie algebra $\mathrm{so(4)}$”, Dokl. Math., 86:3 (2012), 827–830 | DOI | MR | Zbl
[15] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 296 pp. | MR | Zbl
[16] A. T. Fomenko, “Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body”, Differentsialnaya geometriya, gruppy Li i mekhanika. 15–2, Zap. nauchn. sem. POMI, 235, POMI, SPb., 1996, 104–183 ; J. Math. Sci. (New York), 94:4 (1999), 1512–1557 | MR | Zbl | DOI
[17] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[18] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[19] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[20] A. T. Fomenko, E. A. Kudryavtseva, “Each finite group is a symmetry group of some map (an “Atom”-bifurcation)”, Moscow Univ. Math. Bull., 68:3 (2013), 148–155 | DOI
[21] P. V. Morozov, Tonkaya liuvilleva klassifikatsiya nekotorykh integriruemykh sluchaev mekhaniki tverdogo tela, kandidatskaya dissertatsiya, Mosk. gos. un-t, mekh.-matem. f-t, M., 2006, 170 pp.