The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 532-572
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the
momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classical Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra
so(4) by taking a natural limit.
Bibliography: 21 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable Hamiltonian systems, Kovalevskaya case, bifurcation diagram, topological invariants.
Mots-clés : Liouville foliation
                    
                  
                
                
                Mots-clés : Liouville foliation
@article{SM_2014_205_4_a4,
     author = {I. K. Kozlov},
     title = {The topology of the {Liouville} foliation for the {Kovalevskaya} integrable case on the {Lie} algebra so(4)},
     journal = {Sbornik. Mathematics},
     pages = {532--572},
     publisher = {mathdoc},
     volume = {205},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a4/}
}
                      
                      
                    TY - JOUR AU - I. K. Kozlov TI - The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4) JO - Sbornik. Mathematics PY - 2014 SP - 532 EP - 572 VL - 205 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a4/ LA - en ID - SM_2014_205_4_a4 ER -
I. K. Kozlov. The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4). Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 532-572. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a4/
