Optimal bounds for the Schur index and the realizability of representations
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 522-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal bound is given for the Schur index of an irreducible complex representation over the field of rational numbers on the class of finite groups of a chosen order or of a chosen exponent. We obtain a sufficient condition for the realizability of an irreducible complex character $\chi$ of a finite group $G$ of exponent $n$ with Schur index $m$, which is either an odd number or has $2$-part no smaller than $4$, over the field of rational numbers in a field $L$ which is a subfield of $\mathbb{Q}(\sqrt[n]{1}\,)$ and $(L:\mathbb{Q}(\chi))=m$. This condition generalizes the well-known Fein condition obtained by him in the case of $n=p^{\alpha}q^{\beta}$. The formulation of the Grunwald-Wang problem on the realizability of representations is generalized, and some sufficient conditions are obtained. Bibliography: 10 titles.
Keywords: finite group, Schur index, realizability of a representation.
@article{SM_2014_205_4_a3,
     author = {D. D. Kiselev},
     title = {Optimal bounds for the {Schur} index and the realizability of representations},
     journal = {Sbornik. Mathematics},
     pages = {522--531},
     year = {2014},
     volume = {205},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a3/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Optimal bounds for the Schur index and the realizability of representations
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 522
EP  - 531
VL  - 205
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a3/
LA  - en
ID  - SM_2014_205_4_a3
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Optimal bounds for the Schur index and the realizability of representations
%J Sbornik. Mathematics
%D 2014
%P 522-531
%V 205
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a3/
%G en
%F SM_2014_205_4_a3
D. D. Kiselev. Optimal bounds for the Schur index and the realizability of representations. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 522-531. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a3/

[1] D. D. Kiselev, “A bound for the Schur index of irreducible representations of finite groups”, Sb. Math., 204:8 (2013), 1152–1160 | DOI | DOI | MR | Zbl

[2] P. Schmid, “Schur indices and Schur groups”, J. Algebra, 169:1 (1994), 226–247 | DOI | MR | Zbl

[3] B. I. Fein, “Minimal splitting fields for group representations”, Pacific J. Math., 51:2 (1974), 427–431 | DOI | MR | Zbl

[4] R. A. Mollin, “Splitting fields and group characters”, J. Reine Angew. Math., 315 (1980), 107–114 | DOI | MR | Zbl

[5] E. Spiegel, A. Trojan, “Minimal splitting fields in cyclotomic extensions”, Proc. Amer. Math. Soc., 87:1 (1983), 33–37 | DOI | MR | Zbl

[6] I. Reiner, Maximal orders, London Math. Soc. Monogr. (N.S.), 28, Oxford Univ. Press, Oxford, 2003, xiv+395 pp. | MR | Zbl

[7] T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Math., 397, Springer-Verlag, Berlin–New York, 1974, v+159 pp. | MR | Zbl

[8] M. Benard, M. M. Schacher, “The Schur subgroup. II”, J. Algebra, 22:2 (1972), 378–385 | DOI | MR | Zbl

[9] V. V. Ishkhanov, B. B. Lur'e, D. K. Faddeev, The embedding problem in Galois theory, Transl. Math. Monogr., 165, Amer. Math. Soc., Providence, RI, 1997, xii+182 pp. | MR | MR | Zbl | Zbl

[10] V. V. Ishkhanov, “The embedding problem with given localizations”, Math. USSR-Izv., 9:3 (1975), 481–492 | DOI | MR | Zbl