The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 488-521
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the $\Gamma$-convergence as $\varepsilon\to 0$ of a family of integral functionals with integrand $f_\varepsilon(x,u,\nabla u)$, where the integrand oscillates with respect to the space variable $x$. The integrands satisfy a two-sided power estimate on the coercivity and growth with different exponents. As a consequence, at least two different variational Dirichlet problems can be connected with the same functional. This phenomenon is called Lavrent'ev's effect. We introduce two versions of $\Gamma$-convergence corresponding to variational problems of the first and second kind. We find the $\Gamma$-limit for the aforementioned family of functionals for problems of both kinds; these may be different. We prove that the $\Gamma$-convergence of functionals goes along with the convergence of the energies and minimizers of the variational problems.
Bibliography: 23 titles.
Keywords:
homogenization, $\Gamma$-realizing sequence, upper and lower regularization.
Mots-clés : $\Gamma$-convergence, Lavrent'ev's effect
Mots-clés : $\Gamma$-convergence, Lavrent'ev's effect
@article{SM_2014_205_4_a2,
author = {V. V. Zhikov and S. E. Pastukhova},
title = {The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions},
journal = {Sbornik. Mathematics},
pages = {488--521},
publisher = {mathdoc},
volume = {205},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a2/}
}
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions JO - Sbornik. Mathematics PY - 2014 SP - 488 EP - 521 VL - 205 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a2/ LA - en ID - SM_2014_205_4_a2 ER -
%0 Journal Article %A V. V. Zhikov %A S. E. Pastukhova %T The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions %J Sbornik. Mathematics %D 2014 %P 488-521 %V 205 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a2/ %G en %F SM_2014_205_4_a2
V. V. Zhikov; S. E. Pastukhova. The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 488-521. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a2/