Rings whose $p$-ranks do not exceed~1
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 476-487

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider associative torsion-free rings of finite rank whose $p$-ranks do not exceed 1. For these rings, certain analogues of Wedderburn's theorem on finite-dimensional algebras are found. Bibliography: 11 titles.
Keywords: associative ring, mixed Abelian group, ring of polyadic numbers, $p$-rank, $E$-ring.
Mots-clés : quotient-divisible group
@article{SM_2014_205_4_a1,
     author = {O. Guseva and A. V. Tsarev},
     title = {Rings whose $p$-ranks do not exceed~1},
     journal = {Sbornik. Mathematics},
     pages = {476--487},
     publisher = {mathdoc},
     volume = {205},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/}
}
TY  - JOUR
AU  - O. Guseva
AU  - A. V. Tsarev
TI  - Rings whose $p$-ranks do not exceed~1
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 476
EP  - 487
VL  - 205
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/
LA  - en
ID  - SM_2014_205_4_a1
ER  - 
%0 Journal Article
%A O. Guseva
%A A. V. Tsarev
%T Rings whose $p$-ranks do not exceed~1
%J Sbornik. Mathematics
%D 2014
%P 476-487
%V 205
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/
%G en
%F SM_2014_205_4_a1
O. Guseva; A. V. Tsarev. Rings whose $p$-ranks do not exceed~1. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 476-487. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/