Mots-clés : quotient-divisible group
@article{SM_2014_205_4_a1,
author = {O. Guseva and A. V. Tsarev},
title = {Rings whose $p$-ranks do not exceed~1},
journal = {Sbornik. Mathematics},
pages = {476--487},
year = {2014},
volume = {205},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/}
}
O. Guseva; A. V. Tsarev. Rings whose $p$-ranks do not exceed 1. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 476-487. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/
[1] I. A. Aleksandrov, P. A. Krylov, “F. E. Molin – uchenyi i pedagog”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2011, no. 3, 6–11
[2] R. A. Beaumont, R. S. Pierce, “Torsion free rings”, Illinois J. Math., 5:1 (1961), 61–98 | MR | Zbl
[3] A. V. Tsarev, “Pure subrings of the rings $\mathbb Z_\chi$”, Sb. Math., 200:9-10 (2009), 1537–1563 | DOI | DOI | MR | Zbl
[4] O. I. Davydova, “Rank-$1$ quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | DOI | MR | Zbl
[5] E. A. Timoshenko, “Base fields of $\mathrm{csp}$-rings”, Algebra and Logic, 49:4 (2010), 378–385 | DOI | MR | Zbl
[6] L. Fuchs, Infinite abelian groups, v. I, II, Pure Appl. Math., 36, Academic Press, New York–London, 1970, 1973, xi+290 pp., ix+363 pp. | MR | MR | MR | MR | Zbl | Zbl
[7] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006, 512 pp.
[8] C. E. Murley, “The classification of certain classes of torsion free Abelian groups”, Pasific J. Math., 40:3 (1972), 647–665 | DOI | MR | Zbl
[9] R. A. Bowshell, P. Schultz, “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl
[10] A. A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl
[11] A. A. Fomin, “A category of matrices representing two categories of Abelian groups”, J. Math. Sci., 154:3 (2008), 430–445 | DOI | MR | Zbl