Rings whose $p$-ranks do not exceed~1
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 476-487
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider associative torsion-free rings of finite rank whose $p$-ranks do not exceed 1. For these rings, certain analogues of Wedderburn's theorem on finite-dimensional algebras are found.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
associative ring, mixed Abelian group, ring of polyadic numbers, $p$-rank, $E$-ring.
Mots-clés : quotient-divisible group
                    
                  
                
                
                Mots-clés : quotient-divisible group
@article{SM_2014_205_4_a1,
     author = {O. Guseva and A. V. Tsarev},
     title = {Rings whose $p$-ranks do not exceed~1},
     journal = {Sbornik. Mathematics},
     pages = {476--487},
     publisher = {mathdoc},
     volume = {205},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/}
}
                      
                      
                    O. Guseva; A. V. Tsarev. Rings whose $p$-ranks do not exceed~1. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 476-487. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a1/
