Banach spaces that realize minimal fillings
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of $L_1$. The spaces $L_1$ are characterized in terms of Steiner points (medians). Bibliography: 25 titles.
Keywords: Banach space, shortest network, minimal filling, Steiner point (median).
@article{SM_2014_205_4_a0,
     author = {B. B. Bednov and P. A. Borodin},
     title = {Banach spaces that realize minimal fillings},
     journal = {Sbornik. Mathematics},
     pages = {459--475},
     publisher = {mathdoc},
     volume = {205},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
AU  - P. A. Borodin
TI  - Banach spaces that realize minimal fillings
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 459
EP  - 475
VL  - 205
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/
LA  - en
ID  - SM_2014_205_4_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%A P. A. Borodin
%T Banach spaces that realize minimal fillings
%J Sbornik. Mathematics
%D 2014
%P 459-475
%V 205
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/
%G en
%F SM_2014_205_4_a0
B. B. Bednov; P. A. Borodin. Banach spaces that realize minimal fillings. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/