Banach spaces that realize minimal fillings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of $L_1$. The spaces $L_1$ are characterized in terms of Steiner points (medians).
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Banach space, shortest network, minimal filling, Steiner point (median).
                    
                    
                    
                  
                
                
                @article{SM_2014_205_4_a0,
     author = {B. B. Bednov and P. A. Borodin},
     title = {Banach spaces that realize minimal fillings},
     journal = {Sbornik. Mathematics},
     pages = {459--475},
     publisher = {mathdoc},
     volume = {205},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/}
}
                      
                      
                    B. B. Bednov; P. A. Borodin. Banach spaces that realize minimal fillings. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/
