Banach spaces that realize minimal fillings
Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of $L_1$. The spaces $L_1$ are characterized in terms of Steiner points (medians). Bibliography: 25 titles.
Keywords: Banach space, shortest network, minimal filling, Steiner point (median).
@article{SM_2014_205_4_a0,
     author = {B. B. Bednov and P. A. Borodin},
     title = {Banach spaces that realize minimal fillings},
     journal = {Sbornik. Mathematics},
     pages = {459--475},
     year = {2014},
     volume = {205},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
AU  - P. A. Borodin
TI  - Banach spaces that realize minimal fillings
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 459
EP  - 475
VL  - 205
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/
LA  - en
ID  - SM_2014_205_4_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%A P. A. Borodin
%T Banach spaces that realize minimal fillings
%J Sbornik. Mathematics
%D 2014
%P 459-475
%V 205
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/
%G en
%F SM_2014_205_4_a0
B. B. Bednov; P. A. Borodin. Banach spaces that realize minimal fillings. Sbornik. Mathematics, Tome 205 (2014) no. 4, pp. 459-475. http://geodesic.mathdoc.fr/item/SM_2014_205_4_a0/

[1] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 424 pp.

[2] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl

[3] R. S. Ismagilov, “Minimal widths of metric spaces”, Funct. Anal. Appl., 33:4 (1999), 270–279 | DOI | DOI | MR | Zbl

[4] H. Edelsbrunner, A. Ivanov, R. Karasev, “Current open problems in discrete and computational geometry”, Model. i analiz inform. sistem, 19:5 (2012), 5–17

[5] A. O. Ivanov, A. A. Tuzhilin, A. Yu. Eremin, E. S. Erokhovets, Z. N. Ovsyannikov, A. S. Pakhomova, O. V. Rubleva, N. P. Strelkova, E. I. Filonenko, “Minimalnye zapolneniya psevdometricheskikh prostranstv”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 27, MGU, M., 2011, 83–105

[6] B. B. Bednov, N. P. Strelkova, “On the existence of shortest networks in Banach spaces”, Math. Notes, 94:1-2 (2013), 41–48 | DOI | DOI | Zbl

[7] A. L. Garkavi, V. A. Shmatkov, “On the Lamé point and its generalizations in a normed space”, Math. USSR-Sb., 24:2 (1974), 267–286 | DOI | MR | Zbl

[8] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl

[9] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl

[10] P. L. Papini, “Two new examples of sets without medians and centers”, Top, 13:2 (2005), 315–320 | DOI | MR | Zbl

[11] P. A. Borodin, “An example of nonexistence of a Steiner point in a Banach space”, Math. Notes, 87:3-4 (2010), 485–488 | DOI | DOI | MR | Zbl

[12] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR

[13] A. Yu. Eremin, “A formula for the weight of a minimal filling of a finite metric space”, Sb. Math., 204:9 (2013), 1285–1306 | DOI | DOI | MR | Zbl

[14] A. Grothendieck, “Une caractérisation vectorielle-métrique des espaces $L^1$”, Canad. J. Math., 7:4 (1955), 552–561 | DOI | MR | Zbl

[15] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., no. 48, 1964, 112 pp. | MR | Zbl

[16] Ȧ. Lima, “Intersection properties of balls and subspaces in Banach spaces”, Trans. Amer. Math. Soc., 227 (1977), 1–62 | DOI | MR | Zbl

[17] P. Bandyopadhyay, T. S. S. R. K. Rao, “Central subspaces of Banach spaces”, J. Approx. Theory, 103:2 (2000), 206–222 | DOI | MR | Zbl

[18] T. S. S. R. K. Rao, “Chebyshev centers and centrable sets”, Proc. Amer. Math. Soc., 130:9 (2002), 2593–2598 | DOI | MR | Zbl

[19] A. B. Hansen, Ȧ. Lima, “The structure of finite dimensional Banach spaces with the 3.2. intersection property”, Acta Math., 146:1-2 (1981), 1–23 | DOI | MR | Zbl

[20] C. Benítez, M. Fernández, M. L. Soriano, “Location of Fermat–Torricelli medians of three points”, Trans. Amer. Math. Soc., 354:12 (2002), 5027–5038 (electronic) | DOI | MR | Zbl

[21] S. Kakutani, “Concrete representation of abstract $(L)$-spaces and the mean ergodic theorem”, Ann. of Math. (2), 42:2 (1941), 523–537 | DOI | MR | Zbl

[22] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[23] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004, 512 pp.

[24] A. S. Pakhomova, “Estimates of Steiner subratio and Steiner–Gromov ratio”, Moscow Univ. Math. Bull., 69:1 (2014), 16–23 | DOI

[25] H. König, N. Tomczak-Jaegermann, “Norms of minimal projections”, J. Funct. Anal., 119:2 (1994), 253–280 | DOI | MR | Zbl