The Hamiltonian property of the flow of singular trajectories
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 432-458

Voir la notice de l'article provenant de la source Math-Net.Ru

Pontryagin's maximum principle reduces optimal control problems to the investigation of Hamiltonian systems of ordinary differential equations with discontinuous right-hand side. An optimal synthesis is the totality of solutions to this system with a fixed terminal (or initial) condition, which fill a region in the phase space one-to-one. In the construction of optimal synthesis, singular trajectories that go along the discontinuity surface $N$ of the right-hand side of the Hamiltonian system of ordinary differential equations, are crucial. The aim of the paper is to prove that the system of singular trajectories makes up a Hamiltonian flow on a submanifold of $N$. In particular, it is proved that the flow of singular trajectories in the problem of control of the magnetized Lagrange top in a variable magnetic field is completely Liouville integrable and can be embedded in the flow of a smooth superintegrable Hamiltonian system in the ambient space. Bibliography: 17 titles.
Keywords: singular trajectories, singular extremals, Hamiltonian systems, integrable and superintegrable systems
Mots-clés : Lagrange top.
@article{SM_2014_205_3_a5,
     author = {L. V. Lokutsievskii},
     title = {The {Hamiltonian} property of the flow of singular trajectories},
     journal = {Sbornik. Mathematics},
     pages = {432--458},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/}
}
TY  - JOUR
AU  - L. V. Lokutsievskii
TI  - The Hamiltonian property of the flow of singular trajectories
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 432
EP  - 458
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/
LA  - en
ID  - SM_2014_205_3_a5
ER  - 
%0 Journal Article
%A L. V. Lokutsievskii
%T The Hamiltonian property of the flow of singular trajectories
%J Sbornik. Mathematics
%D 2014
%P 432-458
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/
%G en
%F SM_2014_205_3_a5
L. V. Lokutsievskii. The Hamiltonian property of the flow of singular trajectories. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 432-458. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/