The Hamiltonian property of the flow of singular trajectories
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 432-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pontryagin's maximum principle reduces optimal control problems to the investigation of Hamiltonian systems of ordinary differential equations with discontinuous right-hand side. An optimal synthesis is the totality of solutions to this system with a fixed terminal (or initial) condition, which fill a region in the phase space one-to-one. In the construction of optimal synthesis, singular trajectories that go along the discontinuity surface $N$ of the right-hand side of the Hamiltonian system of ordinary differential equations, are crucial. The aim of the paper is to prove that the system of singular trajectories makes up a Hamiltonian flow on a submanifold of $N$. In particular, it is proved that the flow of singular trajectories in the problem of control of the magnetized Lagrange top in a variable magnetic field is completely Liouville integrable and can be embedded in the flow of a smooth superintegrable Hamiltonian system in the ambient space. Bibliography: 17 titles.
Keywords: singular trajectories, singular extremals, Hamiltonian systems, integrable and superintegrable systems
Mots-clés : Lagrange top.
@article{SM_2014_205_3_a5,
     author = {L. V. Lokutsievskii},
     title = {The {Hamiltonian} property of the flow of singular trajectories},
     journal = {Sbornik. Mathematics},
     pages = {432--458},
     year = {2014},
     volume = {205},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/}
}
TY  - JOUR
AU  - L. V. Lokutsievskii
TI  - The Hamiltonian property of the flow of singular trajectories
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 432
EP  - 458
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/
LA  - en
ID  - SM_2014_205_3_a5
ER  - 
%0 Journal Article
%A L. V. Lokutsievskii
%T The Hamiltonian property of the flow of singular trajectories
%J Sbornik. Mathematics
%D 2014
%P 432-458
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/
%G en
%F SM_2014_205_3_a5
L. V. Lokutsievskii. The Hamiltonian property of the flow of singular trajectories. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 432-458. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/

[1] M. I. Zelikin, V. F. Borisov, “Singular optimal regimes in problems of mathematical economics”, J. Math. Sci. (N. Y.), 130:1 (2005), 4409–4570 | DOI | MR | Zbl

[2] H. J. Kelley, R. E. Kopp, H. G. Moyer, “Singular extremals”, Topics in optimization, Academic Press, New York, 1967, 63–101 | MR

[3] A. J. Krener, “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optimization, 15:2 (1977), 256–293 | DOI | MR | Zbl

[4] A. A. Agrachev, R. V. Gamkrelidze, “A second order optimality principle for a time-optimal problem”, Math. USSR-Sb., 29:4 (1976), 547–576 | DOI | MR | Zbl

[5] A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I. A decoding theorem”, Math. USSR-Izv., 28:2 (1987), 275–303 | DOI | MR | Zbl

[6] A. V. Dmitruk, “Quadratic sufficient conditions for the minimality of abnormal sub-Riemannian geodesics”, J. Math. Sci. (N. Y.), 104:1 (2001), 779–829 | DOI | MR | Zbl

[7] R. M. Lewis, “Definitions of order and junction conditions in singular optimal control problems”, SIAM J. Control Optim., 18:1 (1980), 21–32 | DOI | MR | Zbl

[8] J. P. McDannel, W. F. Powers, “Necessary conditions joining optimal singular and non-singular subarcs”, SIAM J. Control, 9:2 (1971), 161–173 | DOI | MR | Zbl

[9] A. F. Filippov, Differential equations with discontinuous righthand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988, x+304 pp. | MR | MR | Zbl | Zbl

[10] H. M. Robbins, “A generalized Legendre–Clebsch condition for the singular cases of optimal control”, IBM J. Res. Develop., 11:4 (1967), 361–372 | DOI | Zbl

[11] M. I. Zelikin, V. F. Borisov, Theory of chattering control, with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhüser Boston, Inc., Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl

[12] Yu. Mozer, Integriruemye gamiltonovy sistemy i spektralnaya teoriya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999, 296 pp. | Zbl

[13] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl

[14] R. Hildebrand, L. V. Lokutsievskiy, M. I. Zelikin, “Generic fractal structure of finite parts of trajectories of piecewise smooth hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | DOI | MR | Zbl

[15] V. I. Arnol?d, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989, xvi+508 pp. | MR | MR | Zbl

[16] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 296 pp. | MR | Zbl

[17] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.