Mots-clés : Lagrange top.
@article{SM_2014_205_3_a5,
author = {L. V. Lokutsievskii},
title = {The {Hamiltonian} property of the flow of singular trajectories},
journal = {Sbornik. Mathematics},
pages = {432--458},
year = {2014},
volume = {205},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/}
}
L. V. Lokutsievskii. The Hamiltonian property of the flow of singular trajectories. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 432-458. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a5/
[1] M. I. Zelikin, V. F. Borisov, “Singular optimal regimes in problems of mathematical economics”, J. Math. Sci. (N. Y.), 130:1 (2005), 4409–4570 | DOI | MR | Zbl
[2] H. J. Kelley, R. E. Kopp, H. G. Moyer, “Singular extremals”, Topics in optimization, Academic Press, New York, 1967, 63–101 | MR
[3] A. J. Krener, “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optimization, 15:2 (1977), 256–293 | DOI | MR | Zbl
[4] A. A. Agrachev, R. V. Gamkrelidze, “A second order optimality principle for a time-optimal problem”, Math. USSR-Sb., 29:4 (1976), 547–576 | DOI | MR | Zbl
[5] A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I. A decoding theorem”, Math. USSR-Izv., 28:2 (1987), 275–303 | DOI | MR | Zbl
[6] A. V. Dmitruk, “Quadratic sufficient conditions for the minimality of abnormal sub-Riemannian geodesics”, J. Math. Sci. (N. Y.), 104:1 (2001), 779–829 | DOI | MR | Zbl
[7] R. M. Lewis, “Definitions of order and junction conditions in singular optimal control problems”, SIAM J. Control Optim., 18:1 (1980), 21–32 | DOI | MR | Zbl
[8] J. P. McDannel, W. F. Powers, “Necessary conditions joining optimal singular and non-singular subarcs”, SIAM J. Control, 9:2 (1971), 161–173 | DOI | MR | Zbl
[9] A. F. Filippov, Differential equations with discontinuous righthand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988, x+304 pp. | MR | MR | Zbl | Zbl
[10] H. M. Robbins, “A generalized Legendre–Clebsch condition for the singular cases of optimal control”, IBM J. Res. Develop., 11:4 (1967), 361–372 | DOI | Zbl
[11] M. I. Zelikin, V. F. Borisov, Theory of chattering control, with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhüser Boston, Inc., Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl
[12] Yu. Mozer, Integriruemye gamiltonovy sistemy i spektralnaya teoriya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999, 296 pp. | Zbl
[13] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl
[14] R. Hildebrand, L. V. Lokutsievskiy, M. I. Zelikin, “Generic fractal structure of finite parts of trajectories of piecewise smooth hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | DOI | MR | Zbl
[15] V. I. Arnol?d, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989, xvi+508 pp. | MR | MR | Zbl
[16] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 296 pp. | MR | Zbl
[17] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy, Sovremennaya matematika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.