A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431

Voir la notice de l'article provenant de la source Math-Net.Ru

Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.
Keywords: minimum of a lattice, multidimensional continued fraction, average length of a continued fraction.
@article{SM_2014_205_3_a4,
     author = {A. A. Illarionov},
     title = {A~multidimensional generalization of {Heilbronn's} theorem on the average length of a~finite continued fraction},
     journal = {Sbornik. Mathematics},
     pages = {419--431},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 419
EP  - 431
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/
LA  - en
ID  - SM_2014_205_3_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction
%J Sbornik. Mathematics
%D 2014
%P 419-431
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/
%G en
%F SM_2014_205_3_a4
A. A. Illarionov. A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/