@article{SM_2014_205_3_a4,
author = {A. A. Illarionov},
title = {A~multidimensional generalization of {Heilbronn's} theorem on the average length of a~finite continued fraction},
journal = {Sbornik. Mathematics},
pages = {419--431},
year = {2014},
volume = {205},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/}
}
TY - JOUR AU - A. A. Illarionov TI - A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction JO - Sbornik. Mathematics PY - 2014 SP - 419 EP - 431 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/ LA - en ID - SM_2014_205_3_a4 ER -
A. A. Illarionov. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/
[1] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis, papers in honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR | Zbl
[2] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl
[3] D. E. Knuth, “Evalution of Porter's constant”, Comput. Math. Appl., 2:2 (1976), 137–139 | DOI | Zbl
[4] G. F. Voronoi, Ob odnom obobschenii algorifma nepreryvnykh drobei, Tipografiya Varshavskogo uchebnogo okruga, Varshava, 1896, 221 pp.
[5] G. F. Voronoi, Sobranie sochinenii, v. 1, Izd-vo AN USSR, Kiev, 1952, 399 pp. | MR | Zbl
[6] H. Minkowski, “Généralisation de la théorie des fraction continues”, Ann. Sci. Ècole Norm. Sup. (3), 13 (1896), 41–60 | MR | Zbl
[7] H. Minkowski, “Zur Theorie der Kettenbruche”, Gesammelte Abhandlungen, v. 1, Teubner, Leipzig, 1911, 278–292
[8] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.–L., 1940, 3–340 | MR | Zbl
[9] B. N. Delone, Peterburgskaya shkola teorii chisel, Izd-vo AN SSSR, M.–L., 1947, 421 pp. | MR | Zbl
[10] H. Hancock, Development of the Minkowski geometry of numbers, v. 1, 2, Dover Publications, Inc., New York, 1964, xix+452 pp., ix+387 pp. | MR | Zbl
[11] V. A. Bykovskii, “On the error of number-theoretic quadrature formulas”, Dokl. Math., 67:2 (2003), 175–176 | MR | Zbl
[12] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, 2-e izd., MTsNMO, M., 2004, 285 pp. | MR | Zbl
[13] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl
[14] D. M. Ushanov, “Bykovskii's theorem and a generalization of Larcher's theorem”, Math. Notes, 91:5-6 (2012), 746–750 | DOI | DOI
[15] A. Illarionov, “On the asymptotic distribution of integer matrices”, Mosc. J. Comb. Number Theory, 1:4 (2011), 13–57 | MR | Zbl
[16] A. A. Illarionov, “Estimate for the number of relative minima of arbitrary-rank incomplete integer lattices”, Dokl. Math., 77:1 (2008), 31–34 | DOI | MR | Zbl
[17] A. A. Illarionov, “Average number of local minima for three-dimensional integral lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570 | DOI | MR | Zbl
[18] A. A. Illarionov, D. A. Slinkin, “O kolichestve vershin mnogogrannikov Kleina tselochislennykh reshetok v srednem”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55 | MR | Zbl
[19] A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562 | DOI | DOI | MR | Zbl
[20] A. A. Illarionov, Yu. A. Soika, “O kolichestve otnositelnykh minimumov tselochislennykh reshetok”, Dalnevost. matem. zhurn., 11:2 (2011), 149–154 | MR
[21] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, viii+344 pp. | MR | MR | Zbl | Zbl