A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431
Voir la notice de l'article provenant de la source Math-Net.Ru
Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski.
Bibliography: 21 titles.
Keywords:
minimum of a lattice, multidimensional continued fraction, average length of a continued fraction.
@article{SM_2014_205_3_a4,
author = {A. A. Illarionov},
title = {A~multidimensional generalization of {Heilbronn's} theorem on the average length of a~finite continued fraction},
journal = {Sbornik. Mathematics},
pages = {419--431},
publisher = {mathdoc},
volume = {205},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/}
}
TY - JOUR AU - A. A. Illarionov TI - A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction JO - Sbornik. Mathematics PY - 2014 SP - 419 EP - 431 VL - 205 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/ LA - en ID - SM_2014_205_3_a4 ER -
A. A. Illarionov. A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/