A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.
Keywords: minimum of a lattice, multidimensional continued fraction, average length of a continued fraction.
@article{SM_2014_205_3_a4,
     author = {A. A. Illarionov},
     title = {A~multidimensional generalization of {Heilbronn's} theorem on the average length of a~finite continued fraction},
     journal = {Sbornik. Mathematics},
     pages = {419--431},
     year = {2014},
     volume = {205},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 419
EP  - 431
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/
LA  - en
ID  - SM_2014_205_3_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction
%J Sbornik. Mathematics
%D 2014
%P 419-431
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/
%G en
%F SM_2014_205_3_a4
A. A. Illarionov. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a4/

[1] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis, papers in honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR | Zbl

[2] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl

[3] D. E. Knuth, “Evalution of Porter's constant”, Comput. Math. Appl., 2:2 (1976), 137–139 | DOI | Zbl

[4] G. F. Voronoi, Ob odnom obobschenii algorifma nepreryvnykh drobei, Tipografiya Varshavskogo uchebnogo okruga, Varshava, 1896, 221 pp.

[5] G. F. Voronoi, Sobranie sochinenii, v. 1, Izd-vo AN USSR, Kiev, 1952, 399 pp. | MR | Zbl

[6] H. Minkowski, “Généralisation de la théorie des fraction continues”, Ann. Sci. Ècole Norm. Sup. (3), 13 (1896), 41–60 | MR | Zbl

[7] H. Minkowski, “Zur Theorie der Kettenbruche”, Gesammelte Abhandlungen, v. 1, Teubner, Leipzig, 1911, 278–292

[8] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.–L., 1940, 3–340 | MR | Zbl

[9] B. N. Delone, Peterburgskaya shkola teorii chisel, Izd-vo AN SSSR, M.–L., 1947, 421 pp. | MR | Zbl

[10] H. Hancock, Development of the Minkowski geometry of numbers, v. 1, 2, Dover Publications, Inc., New York, 1964, xix+452 pp., ix+387 pp. | MR | Zbl

[11] V. A. Bykovskii, “On the error of number-theoretic quadrature formulas”, Dokl. Math., 67:2 (2003), 175–176 | MR | Zbl

[12] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, 2-e izd., MTsNMO, M., 2004, 285 pp. | MR | Zbl

[13] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl

[14] D. M. Ushanov, “Bykovskii's theorem and a generalization of Larcher's theorem”, Math. Notes, 91:5-6 (2012), 746–750 | DOI | DOI

[15] A. Illarionov, “On the asymptotic distribution of integer matrices”, Mosc. J. Comb. Number Theory, 1:4 (2011), 13–57 | MR | Zbl

[16] A. A. Illarionov, “Estimate for the number of relative minima of arbitrary-rank incomplete integer lattices”, Dokl. Math., 77:1 (2008), 31–34 | DOI | MR | Zbl

[17] A. A. Illarionov, “Average number of local minima for three-dimensional integral lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570 | DOI | MR | Zbl

[18] A. A. Illarionov, D. A. Slinkin, “O kolichestve vershin mnogogrannikov Kleina tselochislennykh reshetok v srednem”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55 | MR | Zbl

[19] A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562 | DOI | DOI | MR | Zbl

[20] A. A. Illarionov, Yu. A. Soika, “O kolichestve otnositelnykh minimumov tselochislennykh reshetok”, Dalnevost. matem. zhurn., 11:2 (2011), 149–154 | MR

[21] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, viii+344 pp. | MR | MR | Zbl | Zbl