@article{SM_2014_205_3_a3,
author = {A. O. Ivanov and A. E. Mel'nikova and A. A. Tuzhilin},
title = {Stabilization of a~locally minimal forest},
journal = {Sbornik. Mathematics},
pages = {387--418},
year = {2014},
volume = {205},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a3/}
}
A. O. Ivanov; A. E. Mel'nikova; A. A. Tuzhilin. Stabilization of a locally minimal forest. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 387-418. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a3/
[1] V. Jarník, M. Kössler, “O minimalnich grafeth obeahujicich n danijch bodu”, Časopis Pěst. Mat., 63 (1934), 223–235 | Zbl
[2] F. K. Hwang, “A linear time algorithm for full Steiner trees”, Oper. Res. Lett., 4:5 (1986), 235–237 | DOI | MR | Zbl
[3] M. R. Garey, R. L. Graham, D. S. Johnson, “Some NP-complete geometric problems”, Proceedings of the eighth annual ACM symposium on Theory of computing (Hershey, Pa., 1976), ACM, New York, NY, 1976, 10–22 | MR | Zbl
[4] A. O. Ivanov, A. A. Tuzhilin, “Stabilization of locally minimal trees”, Math. Notes, 86:3-4 (2009), 483–492 | DOI | DOI | MR | Zbl
[5] A. O. Ivanov, O. A. S'edina, A. A. Tuzhilin, “The structure of minimal Steiner trees in the neighborhoods of the lunes of their edges”, Math. Notes, 91:3-4 (2012), 339–353 | DOI | DOI
[6] N. P. Strelkova, “Ustoichivost lokalno minimalnykh setei”, Tr. sem. po vekt. i tenz. analizu, 29 (2013), 148–170
[7] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 424 pp.
[8] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004, 512 pp.
[9] A. O. Ivanov, A. A. Tuzhilin, Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994, xviii+414 pp. | MR | Zbl
[10] B. B. Bednov, N. P. Strelkova, “On the existence of shortest networks in Banach spaces”, Math. Notes, 94:1 (2013), 41–48 | DOI | DOI | Zbl