On the third cohomology of algebraic groups of rank two in positive characteristic
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 343-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We evaluate the third cohomology of simple simply connected algebraic groups of rank 2 over an algebraically closed field of positive characteristic with coefficients in simple modules. It is assumed that the characteristic $p$ of the field is greater than $3$ for $\operatorname{SL}_3$, greater than $5$ for $\operatorname{Sp}_4$, and greater than $11$ for $G_2$. It follows from the main result that the dimensions of the cohomology spaces do not exceed the rank of the algebraic group in question. To prove the main results we study the properties of the first-quadrant Lyndon-Hochschild-Serre spectral sequence with respect to an infinitesimal subgroup, namely, the Frobenius kernel of the given algebraic group. Bibliography: 49 titles.
Keywords: cohomology
Mots-clés : algebraic group, simple module, Frobenius kernel.
@article{SM_2014_205_3_a2,
     author = {A. S. Dzhumadil'daev and Sh. Sh. Ibraev},
     title = {On the third cohomology of algebraic groups of rank two in positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {343--386},
     year = {2014},
     volume = {205},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a2/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
AU  - Sh. Sh. Ibraev
TI  - On the third cohomology of algebraic groups of rank two in positive characteristic
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 343
EP  - 386
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a2/
LA  - en
ID  - SM_2014_205_3_a2
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%A Sh. Sh. Ibraev
%T On the third cohomology of algebraic groups of rank two in positive characteristic
%J Sbornik. Mathematics
%D 2014
%P 343-386
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a2/
%G en
%F SM_2014_205_3_a2
A. S. Dzhumadil'daev; Sh. Sh. Ibraev. On the third cohomology of algebraic groups of rank two in positive characteristic. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 343-386. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a2/

[1] J. C. Jantzen, Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Inc., Boston, MA, 1987, xiv+443 pp. | MR | Zbl

[2] Classification des groupes de Lie algébriques, 1956–1958 Exp. No. 1–24, v. 1, 2, Seminaire C. Chevalley, 1, 2, Secrétariat mathématique, Paris, 1958

[3] G. Lusztig, “Some problems in the representation theory of finite Chevalley groups”, The Santa Cruz conference on finite groups, Univ. California, Santa Cruz, Calif., 1979, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 313–317 pp. | DOI | MR | Zbl

[4] G. Lusztig, “Monodromic systems on affine flag manifolds”, Proc. Roy. Soc. London Ser. A, 445:1923 (1994), 231–246 | DOI | MR | Zbl

[5] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque, 220, Soc. Math. France, Paris, 1994, 321 pp. | MR | Zbl

[6] M. Kashiwara, T. Tanisaki, “Kazhdan–Lusztig conjecture for affine Lie algebras with negative level”, Duke Math. J., 77:1 (1995), 21–62 | DOI | MR | Zbl

[7] M. Kashiwara, T. Tanisaki, “Kazhdan–Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case”, Duke Math. J., 84:3 (1996), 771–813 | DOI | MR | Zbl

[8] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras. I, II”, J. Amer. Math. Soc., 6:4 (1993), 905–947, 949–1011 | DOI | MR | Zbl

[9] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras. III, IV”, J. Amer. Math. Soc., 7:2 (1994), 335–381, 383–453 | DOI | MR | MR | Zbl

[10] R. Bezrukavnikov, I. Mirković, D. Rumynin, “Localization of modules for a semisimple Lie algebra in prime characteristic”, Ann. of Math. (2), 167:3 (2008), 945–991 | DOI | MR | Zbl

[11] P. Fiebig, “Sheaves on affine Schubert varieties, modular representations, and Lusztig's conjecture”, J. Amer. Math. Soc., 24:1 (2011), 133–181 | DOI | MR | Zbl

[12] P. Fiebig, “An upper bound on the exceptional characteristics for Lusztig's character formula”, J. Reine Angew. Math., 673 (2012), 1–31 | DOI | MR | Zbl

[13] A. N. Rudakov, I. R. Shafarevich, “Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic”, Math. Notes, 2:5 (1967), 760–767 | DOI | MR | Zbl

[14] R. Carter, E. Cline, “The submodule structure of Weyl modules for groups of type $A_1$”, Proceedings of the Conference on finite groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York, 1976, 303–311 | MR | Zbl

[15] B. Braden, “Restricted representations of classical Lie algebras of types $A_2$ and $B_2$”, Bull. Amer. Math. Soc., 73:3 (1967), 482–486 | DOI | MR | Zbl

[16] J. C. Jantzen, “Darstellungen halbeinfacher Gruppen und kontravariante Formen”, J. Reine Angew. Math., 290 (1977), 117–141 | DOI | MR | Zbl

[17] J. C. Jantzen, “Weyl modules for groups of Lie type”, Finite simple groups. II (Univ. of Durham, Durham, 1978), Academic Press, Inc., London–New York, 1980, 291–300 | MR | Zbl

[18] T. A. Springer, “Weyl's character formula for algebraic groups”, Invent. Math., 5 (1968), 85–105 | DOI | MR | Zbl

[19] J. C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr., 67, 1973, v+124 pp. | MR | Zbl

[20] J. O'Halloran, “Weyl modules and the cohomology of Chevalley groups”, Amer. J. Math., 103:2 (1981), 399–410 | DOI | MR | Zbl

[21] A. A. Premet, I. D. Suprunenko, “The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights”, Comm. Algebra, 11:12 (1983), 1309–1342 | DOI | MR | Zbl

[22] A. M. Adamovich, “The submodule lattice of Weyl modules for symplectic groups with fundamental highest weights”, Mosc. Univ. Math. Bull., 41:2 (1986), 6–9 | MR | Zbl

[23] E. Cline, “$\operatorname{Ext}^1$ for $\operatorname{SL}_2$”, Comm. Algebra, 7:1 (1979), 107–111 | DOI | MR | Zbl

[24] S. El. Yehia, Extensions of simple modules for the universal Chevalley group and parabolic subgroup, PhD thesis, Warwik, 1982

[25] Ye Jia Chen, “Extensions of simple modules for the group $\operatorname{Sp}(4,K)$”, J. London Math. Soc. (2), 41:1 (1990), 51–62 | DOI | MR | Zbl

[26] Liu Jia-chun, Ye Jia-chen, “Extensions of simple modules for the algebraic group of type $\mathrm{G}_2$”, Comm. Algebra, 21:6 (1993), 1909–1946 | DOI | MR | Zbl

[27] D. I. Stewart, “The second cohomology of simple $\operatorname{SL}_2$-modules”, Proc. Amer. Math. Soc., 138:2 (2010), 427–434 | DOI | MR | Zbl

[28] D. I. Stewart, “The second cohomology of simple $\operatorname{SL}_3$-modules”, Comm. Algebra, 40:12 (2012), 4702–4716 | DOI | MR | Zbl

[29] S. S. Ibraev, “The second cohomology groups of simple modules over $\operatorname{Sp}_{4}(k)$”, Comm. Algebra, 40:3 (2012), 1122–1130 | DOI | MR | Zbl

[30] S. S. Ibraev, “The second cohomology groups of simple modules for $G_{2}$”, Cib. elektron. matem. izv., 8 (2011), 381–396 | MR

[31] E. M. Friedlander, B. J. Parshall, “Cohomology of Lie algebras and algebraic groups”, Amer. J. Math., 108:1 (1986), 235–253 | DOI | MR | Zbl

[32] C. P. Bendel, D. K. Nakano, C. Pillen, “Extensions for finite Chevalley groups. II”, Trans. Amer. Math. Soc., 354:11 (2002), 4421–4454 | DOI | MR | Zbl

[33] A. S. Kleshchev, J. Sheth, “On extensions of simple modules over symmetric and algebraic groups”, J. Algebra, 221:2 (1999), 705–722 | DOI | MR | Zbl

[34] A. S Kleshchev, J. Sheth, “Corrigendum: On extensions of simple modules over symmetric and algebraic groups”, J. Algebra, 238:2 (2001), 843–844 | DOI | MR | Zbl

[35] E. Cline, B. Parshall, L. Scott, “Cohomology of finite groups of Lie type. I”, Inst. Hautes Études Sci. Publ. Math., 45:1 (1975), 169–191 | DOI | MR | Zbl

[36] E. Cline, B. Parshall, L. Scott, “Cohomology of finite groups of Lie type. II”, J. Algebra, 45:1 (1977), 182–198 | DOI | MR | Zbl

[37] University of Georgia VIGRE Algebra Group, “First cohomology for finite groups of Lie type: simple modules with small dominant weights”, Trans. Amer. Math. Soc., 365:2 (2013), 1025–1050 | DOI | MR | Zbl

[38] University of Georgia VIGRE Algebra Group, “Second cohomology for finite groups of Lie type”, J. Algebra, 360 (2012), 21–52 | DOI | MR | Zbl

[39] G. J. McNinch, “The second cohomology of small irredusible modules for simple algebraic groups”, Pacific J. Math., 204:2 (2002), 459–472 | DOI | MR | Zbl

[40] J. B. Sullivan, “Frobenius operations on Hochschild cohomology”, Amer. J. Math., 102:4 (1980), 765–780 | DOI | MR | Zbl

[41] H. H. Andersen, J. C. Jantzen, “Cohomology of induced representations for algebraic groups”, Math. Ann., 269:4 (1984), 487–524 | DOI | MR | Zbl

[42] G. Hochschild, “Cohomology of restricted Lie algebras”, Amer. J. Math., 76:3 (1954), 555–580 | DOI | MR | Zbl

[43] A. S. Dzhumadil'daev, “On the cohomology of modular Lie algebras”, Math. USSR-Sb., 47:1 (1984), 127–143 | DOI | MR | Zbl

[44] A. S. Dzhumadil'daev, “On a Levi theorem for Lie algebras of characteristic $p$”, Russian Math. Surveys, 41:5 (1986), 139–140 | DOI | MR | Zbl

[45] A. S. Dzhumadil'daev, “Cohomology and nonsplit extensions of modular Lie algebras”, Proceedings of the International conference on algebra, part 2 (Novosibirsk, 1989), Contemp. Math., 131.2, Amer. Math. Soc., Providence, RI, 1992, 31–43 | DOI | MR | Zbl

[46] A. S. Dzhumadil'daev, S. S. Ibraev, “Nonsplit extensions of modular Lie algebras of rank 2”, Homology Homotopy Appl., 4:2.1 (2002), 141–163 | DOI | MR | Zbl

[47] E. Cline, B. Parshall, L. Scott, “Cohomology, hyperalgebras and representations”, J. Algebra, 63:1 (1980), 98–123 | DOI | MR | Zbl

[48] J. C. Jantzen, “First cohomology groups for classical Lie algebras”, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, 1991, 289–315 | MR | Zbl

[49] H. H. Andersen, “The strong linkage principle”, J. Reine Angew. Math., 315 (1980), 53–59 | DOI | MR | Zbl